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Abstract

Topology control and channel assignment are key steps in the design of Wireless Mesh Net-
works (WMNs). Topology control consists of selecting a subset of communication links to set up
the routing network, subject to certain degree constraints. Assigning non-overlapping frequency
channels to the selected links in order to minimize the interference during communication is
called the channel assignment problem. For topology control, we optimize spectral properties
of the network graph such as effective resistance and second smallest eigenvalue of the graph
Laplacian. We are not aware of usage of these quantities in WMN literature even though they
are well-studied in other contexts. For channel assignment, we minimize total interference as-
suming all the links are active. Based on our simulations, we recommend methods to use depend
on the network size. We further propose an alternating minimization scheme to jointly optimize
topology and channel assignment and leave it for future work.
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1 Introduction

Wireless Mesh Networks(WMNs) are communication networks consisting of radios relaying infor-
mation in a wireless fashion. The radios can live in computers or in dedicated boxes for example.
Because of their resilience and adaptability, WMNs are used for communication in military, satellite
groups, municipalities and university campuses (Akyildiz et al., 2005; Pathak and Dutta, 2011).
These are also suitable for deployment in densely populated urban areas where laying cables for
wired networks is expensive.

We study two steps, namely topology control and channel assignment, that are key to designing
a good WMN] in the following network setup. Suppose we are given a set of n mesh routers (nodes)
V, and a possible set of communication links (edges) E. The nodes lie on a plane and the region
around each node is divided into S equiangular regions called sectors. Figure 1 shows a network of
n = 4 nodes where the 4 sectors are shown for node u with angle 7/2. Routers have the following
hardware constraint:

Sector constraint: Nodes can connect to at most » = 1 of its neighbors in each sector.

Topology control consists of choosing a subset E of E that forms the routing network and
satisfies the sector constraint. A typical design goal is a routing network that is well-connected and
facilitates high throughput.

Reducing interference between simultaneous communications is another important competing
goal. Two links (uy,v1), (uz,v2) € E are said to interfere with each other if the signal from u; or
v1 has a strength greater than certain threshold at we or vy or vice-versa. Figure 1 explains the
phenomenon of interference with an example. Availability of multiple non-overlapping frequency
channels mitigates the interference problem, in that, simultaneous communications can happen if
they are on different channels. However there a limited number of such channels (say K = 4) in
the frequency range that the routers operate in.

V2

Figure 1: (Left - Sector constraint) 4 sectors around node u are indicated with dotted lines. Suppose
(u,v), (u,w) € E. Sector constraint dictates that at most one of them can be in E. (Right -
Interference): Communication on (uy,v1) interferes with reception at node vy while node ug is
transmitting to vo if both the communications are in the same frequency channel. Red dotted line
indicates interference.

Channel assignment consists of assigning frequency channels to links to reduce interference. It is
non-trivial to optimally assign channels to links. In fact, minimization of total number of interfering
pairs of links is equivalent to the well-known max-k-cut problem and hence is NP-complete (Frieze
and Jerrum, 1997).
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The eventual goal is to maximize quality of service in the network by optimal topology control
and channel assignment. We take a step towards that by developing topology control algorithms
that give well-connected networks and channel assignment algorithms that efficiently minimize the
total interference, using a mixture of continuous and discrete optimization programs.

The rest of the report is organized as follows. In Section 2 we give details about the network
model and data. In Section 3, we recall some graph spectral properties, connection between mini-
mization of interference and max-k-cut and mention relevant works. We describe the topology and
channel assignment algorithms in Sections 4 and 5 respectively. Then we empirically compare the
algorithms in Section 6 on simulated networks.

2 Network model and quality measure

Networks are generated according to specifications given by Andrew Price. We are given n mesh
routers and their neighborhoods in terms of RSSI (received signal strength indicator). Each router
has 4 directional antennas with their axes in the horizontal plane, transmitting and receiving in
disjoint angular regions of size m/2. The directional antennas are not steerable. The radios operate
in one of K = 4 available channels in the 5GHz band and follow IEEE 802.11s specification. More
concrete details about the network generation such as RSSI calculation are given in Section 6.

In the following, we describe models for interference, link capacity and the approach we use to
measure the quality of the networks given by topology control and channel assignment algorithms.
A bit of notation: let [m] denote the set {1,...,m} for positive integers m.

2.1 Interference model

For nodes 4, j € [n] let P(i,j) denote the RSSI at ¢ due to j. Two links e = (u,v) and ¢’ = (v/,v") €
E are said to interfere with each other if communication on one link creates a noise large enough
to significantly affect the communication on the other link, that is, if

max P(Zvj)zpo \ P(%J)ZPO

max
ie{uv},je{u/ v’} ic{u' v} je{uv}

where py is a threshold depending on the hardware and a V b = max{a, b}.

2.2 Capacity model

The capacity cap(e) of a link e € E is modeled as an non-decreasing function of its SNR (see
Section 6 for a concrete function we use). When there is interference, for e € E, let d;(e) denote
the number of links ¢/ € F in the selected topology, that interfere with e. A link is assumed to
interfere with itself and so dy(e) > 1. Considering CSMA/CA protocol that is used in 802.11s
standard, we assume that the capacity of e is reduced by a factor of d;(e) due to interference when
all the links are active. That is, we assume that the capacity under interference is cap(e)/dz(e).
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2.3 Network quality measure

To measure the quality of a routing network E with a channel assignment ¢, we propose the following
approach, similar to Wong and Gary Chan (2014). We simulate a set of source/sink traffic flow
demands {(s;,t;,d;) : i = 1,...,nq}, where s;,t; are the source and sink and d; is the desired
bandwidth for the ith demand. We calculate the maximum « such that the ith demand is satisfied
with a flow of at least «-d; by solving the following linear program in (1). This is appropriate when
a minimum quality of service needs to be met for each flow. Let f; denote the directed non-negative
flow intended to satisfy the ith demand. We distinguish f;(u,v) from f;(v,u) for u,v € V.

mgx}r;l(i)ze o) (1)
subject to Z filu,v) = Z filv,w) Yo e V\{siti}, Vie[ng (2)
(u,w)ER (v,w)eEE
Yo filwssi)= Y filt,u) =0 Vi€ [ng 3)
(u,8)€E (ti,u)EE
Z filw,v) + fi(v,u) < c(u,v) Y(u,v) € E (4)
> filsi,v) = a-d;i Vi€ [ng (5)

In the above, (2) is the flow constraint, (4) is the capacity constraint and (5) ensures that the
demand is satisfied at least up to a factor of a. (3) sets the flows to source and from sink to 0
because this is an undirected graph. Denote the amount of ith flow «; = Z( si0)EE fi(s;,v) and the
average flow & = n% >oid ay. Note that ; > a-d; for all i € [ng] and so @ > - nid >t d;. When
all the demands are unity, o, @ are the minimum and average flows possible. We use « and @ as
measures of quality of the network. The higher these quantities are, the better the network is.

3 Background and Related work

Before describing the topology control and channel assignment algorithms, we recall the definitions
of effective resistance, Fiedler value and explain how channel assignment is reduced to max-k-cut.
Then we mention relevant previous literature.

3.1 Effective resistance and Fiedler value

Let N = (V, E,w) be the (routing) network where w;; denotes the bandwidth of link (7, j). Let
L € R™™ be the graph Laplacian of N, given by

I Wi i # ]
ij = . .
Zi'#i Wiyr 1= 7.

See Spielman (2007) for the following properties of L. L is positive semidefinite and L1 = 0 for any
graph. That is, the smallest eigenvalue of L is always 0. That second smallest eigenvalue A\y(L),
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also called the Fiedler value reveals some interesting properties of the graph. If A\y(L) = 0, then
the graph is disconnected. In fact, the multiplicity of eigenvalue 0 gives the number of connected
components in the graph. If £/ C E with the same edge weights, then \o(L(E")) < A\o(L(E)).
Between two subgraphs of a graph, larger A2(L) indicates better connectivity.

Now we recall the definition of effective resistance. Treating the bandwidths of network links as
electrical conductances, the electrical network corresponding to N has a total effective resistance
given by

R ZRij _ { n-tr (LT) if N is connected

— oo  otherwise
1<)

where tr denotes the trace operator and L™ is the pseudo-inverse of L (Ghosh et al., 2008). R;; is
known to be proportional to the average commute time for a random walker to go from 7 to j and
return to i, where the random walker takes steps to its neighbors with a probability proportional
to the edge weights. A smaller R =}, _ ; Rij indicates a better connected graph. R gets larger as
network gets closer to getting disconnected and becomes oo for disconnected graphs. It gets smaller
as we add edges. In other words, if E O E’ with the same edge weights, then R(F) < R(E’) with
a slight abuse of notation.

3.2 Channel assignment and Max-k-Cut

Suppose the routing network E is known and let m = |E|. One approach to solve the channel
assignment problem is to find an assignment ¢ that minimizes the total number of interfering pairs

of links:

~ . 1
ce argmin - Z Toer1(ce = cer). (6)
ce{l, , K}™ 2 e,c'€E

where I € {0,1} indicates whether the links e, e’ € E interfere if they are on the same channel.
Rewrite the objective in (6) to note that,

1 1
argmin W — = Z I 1(ce # c) = argmax— Z I 1(ce # cer)
ce[K]™ 2 e,/ €E ce[K]™ 2 ee'€F

where W = ) cech Lee /2. This is the well-known max-k-cut problem on the edge conflict graph
whose nodes are given by the edges e € E and I, indicates whether there is an edge between e
and €’ in the conflict graph. The problem is known to be NP-complete. Further, any polynomial
time approximation scheme has an approximation ratio less than a fixed quantity that is less than
1, unless P=NP (Frieze and Jerrum, 1997). In Section 5, we borrow heuristics for max-k-cut from
graph theory literature to solve our channel assignment problem.

3.3 Related works

Effective resistance or average commute time and Fiedler value are well-studied concepts in graph
theory (Fiedler, 1973; von Luxburg et al., 2014; Chung, 1997). They have applications in sev-
eral areas such as collaborative movie recommendation (Fouss et al., 2005), commute-time kernel
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based clustering (Yen et al., 2007), semi-supervised learning (Zhou and Schoélkopf, 2004), image
segmentation (Shi and Malik, 1997) and graph sparsification (Spielman and Srivastava, 2011).

Spielman and Srivastava (2011) give a graph sparsification algorithm which delivers a sparse
subgraph while preserving the eigenvalues upto a constant multiplicative factor x arbitrarily close
to 1, thus preserving the effective resistance and Fiedler value upto the same factor . However,
with the sector constraint, we believe that their method will be ineffective in our setting because
in practice, the constant factor that is hidden in the complexity of the number of edges that need
to be sampled for sparsification is large.

Ghosh et al. (2008) give a fast interior-point method to minimize the effective resistance of a
graph subject to the constraint that the nonnegative edge weights of the graph sum to 1. Ghosh and
Boyd (2006) propose a computationally tractable heuristic to approximately maximize the second
smallest eigenvalue of the Laplacian of the graph, if one needs to add a fixed number of edges to a
give base graph. We compare our methods to this heuristic in the experiments.

There are several works addressing topology control and channel assignment in WMNs and so
we do not attempt to mention all of them here. The survey paper by Pathak and Dutta (2011)
gives a good overview. Subramanian et al. (2008) formulate the channel assignment problem as
minimization of total interference and give a heuristic called Tabu search to solve the problem.
Sridhar et al. (2009) considers its integer programming formulation and its Lagrangian relaxations.
Liu et al. (2011) greedily chooses channels to minimize the maximum interference on any link. They
further choose a topology by assuming that the directional antennae can be oriented in arbitrary
directions. We do not have the flexibility to change the orientations in our setting. Wong and
Gary Chan (2014) propose to jointly optimize topology and channel assignment by solving an
integer program. They assume that if the SINR (Signal to Interference + Noise Ratio) is greater
than a certain threshold on a link e, then the communication can happen on e. However, if there are
links €’ interfering with e, then if the devices follow CSMA /CA protocol, it should not be possible
for them to be active simultaneously even if SINR is good. Therefore, their method may be more
realistic with a future MAC protocol.

4 Topology Control algorithms

The objective in topology control is to choose a a subset E of E with good properties. Denote
m = |E|,m = |E|. Let zz = 1(e € E) be a binary variable for e € E. First, we claim that the
sector constraint is linear in z. Let N(i,s) denote the edges in E that are incident on the node i
in its sector s. The sector constraint is

Z ze <r for all nodes 7 and sectors s
e€N(i,3)
where r is the number of radios available on each sector. Let Ag be the 0-1 matrix of size nS x m,
with As((i —1)-S +s, e) = 1(e € N(i,s)) for i € [n],s € [S],e € E where n = |V| and S is the
number of sectors available per node. ! Then the following is equivalent to the above constraint:

Agz <rl.

'Note that we abused the notation a bit here; we used e as an element in both E and [m].
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The first method we consider is a naive one for baseline comparison. The next two methods
are to optimize effective resistance and Fiedler value respectively. The last method is a heuristic
designed to be fast.

4.1 Choose Nearest Neighbors

In this naive method, we keep iterating through an arbitrarily ordered list of nodes and make
connections to the nearest neighboring nodes whenever possible. In other words, at each node 1,
for all free sectors on 4, pick the nearest neighbor on the sector that has a free radio on its sector
and add this link to the topology. The distance is measured by power received; higher the power
received, lower the distance.

4.2 Minimize Effective Resistance

For z € {0,1}™, let G(z) denote the graph formed by the edges {¢ € E : z. = 1}. Let
R(2),L(2), LT (2) denote the effective resistance of G(z), the graph Laplacian of G(z) and its
pseudoinverse respectively. The problem is to

mil{lim}ige R(z) subject to Asz <r, G(z) is connected. (7)
ze{0,1}™

Following Ghosh et al. (2008), by observing R(z) = n-tr (L"(z)) when G(z) is a connected graph,
the above problem can be reduced to the following SDP with binary constraints as shown below.

minimize n -tr(Y 8
2€{0,1}™mY (¥) (8)

subject to Agz <r
L(z)+ 117 /n I,

= 0.
I, y| =0

M(2,Y) = [

For (7), (8) the optimal value is assumed to be co when they are infeasible. The SDP constraint in
(8) enforces connectivity as argued now. If G(z) is disconnected, then recalling that nullity(L(z))
is the number of components in G(z), L(z) + 117 /n should have a nontrivial null space. For
a € mull(L(z) + 117 /n),b € R™, such that a # 0,a’b # 0,

[aTb") M(2,Y) { ¢ ] =2aTb + bTYD.

b
For any fixed Y € R™ ", ¢ can be scaled by an arbitrarily large constant so that the above quantity
becomes negative. Hence, if G(z) is disconnected, then M(z,Y") cannot be positive semidefinite.
In other words, the constraint M (z,Y") > 0 enforces connectivity of G(z).

On the other hand, if G(z) is connected, then L(z) + 117 /n = 0 and hence M(z,Y) = 0 if and
only if its Schur complement of Y is positive semidefinite, that is,

M(zY)=0 <= Y —(L(z)+117/n)"t=0.
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Therefore (8) may be rewritten as
minimize n - tr(L(z) + 117 /n)~! 9)
z€{0,1}™

subject to  Asz <r, G(z) is connected

with the relation ¥ = (L(2) + 117 /n)~! at solutions Z to (9) and (Z, }A/) to (8). Further, when G(z)
is connected, n - tr(L(z) + 117 /n)~! = ntr(LT(2)) + n. Therefore (7) and (8) are equivalent upto
a constant difference in the objective.

4.3 Maximize the Fiedler value

As noted in Section 3, the second smallest eigenvalue of L, denoted by A2(L) is a well-known
connectivity metric of a graph, see Fiedler (1973). Maximizing A2(L) is another approach to get a
well-connected sub-graph. The problem can be again formulated as an integer SDP problem, see
Ghosh and Boyd (2006):

maximize A (10)
2€{0,1}77,\
subject to  L(z) + A(117 /n — I,) = 0

Az <r

To see the validity of the formulation, observe that if the eigenvalues of L are 0 = Ay < Ay < - -+ Ay,
then the corresponding eigenvalues of L + t(117 /n — I,,) are 0, Ao —t,--- , A\, — t for any ¢ € R.

Similar to (8), the above integer SDP quickly becomes computationally intractable. Ghosh and
Boyd (2006) propose the following greedy heuristic to maximize A2(L), given a budget of edges to
be added: greedily pick an edge (i, j) with the highest |v; — v;|* where v is the Fiedler vector and
add it to the graph. If Ay is not a repeated eigenvalue, then |v; — Uj|2 is the increment in A\o(L)
due to the addition of (i,j) up to a first order approximation. See Ghosh and Boyd (2006) for
more details. We adapt this heuristic to our setting as follows: We start from an empty graph and
until the graph remains disconnected, we keep adding edges between different components while
satisfying the sector constraint. Once it is connected, we follow their heuristic while satisfying the
sector constraint. Whenever adding an edge selected according to the highest difference |v; — vj|
violates the sector constraint, we don’t add it and simply go to the edge with the next highest
difference and so on.

4.4 Maximize tr(L)

The cost of solving the above integer SDPs scales poorly with n; it takes several tens of minutes
for n > 50. We develop a heuristic with much lower computational complexity here. Instead of
minimizing tr(L™) to minimize effective resistance, we maximize tr(L). tr(L) is simply the sum of
weights of the edges selected subject to the sector constraint. In symbols,

maximize Z zeWe subject to Asz <rl, G(z) is connected (11)

z€{0,1}™ B
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Let wmin = min, .z we. The connectivity constraint can be formulated by asserting that for the
n — 1 source sinks pairs {(u1,u;) : w1 € Vyu; € V' \ {u1}}, there is a flow of at least wpip.

maximize ZeW, 12
2€{0,1}7™,£>0 Z e (12)
subject to  Agz < rl,

Z filu,v) = Z filv, ") Yo e V\{u,u}, 2<i<n,

(v v)EE (vp')eE
Z filuyuq) = Z filuju) =0 2<i<nmn,
(u,u1)EE (usu)EE

filu,v) + fi(v,u) < c(u,v)w(u,v) V(u,v) € E,

Zfz > Wmin -

This is an integer linear program (ILP). The number of constraints and nonzeros in the connectivity
constraint is ©(nm). For n upto a 1000, it can be solved in reasonable time using branch-and-bound
and cutting planes. For larger n, bundle methods which carefully add constraints may be used, but
this is beyond the scope of this report.

4.5 Implementation details

The problems (8),(10) are computationally expensive to solve even for small problems. We use a
simple branch-and-bound algorithm BNB from YALMIP toolbox (Léfberg, 2004). In branch-and-
bound, lower bounds are updated by solving the SDP obtained by relaxing the binary variables
which are not fixed at the branching node to [0,1]. We use the standard SDPT3 (Toh et al., 1999)
solver to solve the SDP relaxations.

Even for small networks, the BNB solver takes several tens of minutes to solve the problem to
optimality. On the other hand, the ILP (11) can be solved pretty quickly with Gurobi software
(Gu et al., 2010) which uses a parallel branch-and-bound algorithm with cutting planes. We also
use this solution to warm-start the BNB solver.

For effective resistance minimization method in (8), the relaxed SDP may be solved by a poten-
tially faster method that is obtained by adapting the clever interior point method given by Ghosh
et al. (2008) for a slightly different problem. We leave this to future work.
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5 Channel Assignment algorithms

In this section we assume that the topology E C E is known and seek to find a channel assignment.
We rewrite (6) as an ILP with binary variables ¢, C of sizes m x K and m x m x K respectively:

K
. 1
mlrtl’gnlze Z §Iee/ ZC’ee/k (13)
e,e’€E k=1
subject to cep + Corpy — 1 < Clerg, e, € B,k € [K] (14)
> e =1, ec E ke K] (15)
k

Here ¢, = 1 means that the edge e € E is assigned channel k. (15) ensures that a channel is
assigned to all edges. The triangle inequality in (14) helps linearize the optimization criterion.
Further, if e, ¢’ € E interfere on single channel and Ceer;, = 1 for some k € [K] at the optima, then
it must happen that c.;, = ¢, = 1 and hence e, ¢’ interfere after channel assignment as well.

For small networks, the above ILP above can be solved to optimality using branch-and-bound
techniques. But as the network gets larger, the computation quickly becomes intractable. Here we
consider a few methods that work in practice.

5.1 Random channel assignment

In this naive algorithm, links are assigned channels drawn uniformly randomly from {1,---, K}.
The probability of two interfering links e, ¢’ to be on the same channel P(c, = ¢or) = 1/K. There-
fore, expected total interference

-~ 1 w
El =) SleP(cc=ce)= 7=
e,e’

K
where W = 1/2 Zae’ e’ is the sum of weights of all edges in the conflict graph. In the single
channel scenario, the interference is W. That means, with K channels, this simple heuristic can
reduce the interference by a factor of K in expectation.

5.2 Local Greedy algorithm

For an edge e € F, if we switch ¢, to the channel that is least used among the edges it conflicts
with, that is, if we choose

Ce € argmin Z I 1(c=ce), (16)
¢ e'ck

then the total interference can only decrease or stay put. Scanning through the list of edges reveals
at least one such edge where a channel switch reduces interference or we must be at a local optimum.
Note that the total interference only decreases during the course of the algorithm. Therefore, if the

10
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conflict weights I.., are integers bounded by a constant, then the algorithm converges to a local
optimum in polynomial time. A local optimum ¢ satisfies I < % because

f:;ZZIee/]l(Eezée/)g;;;{ZIM:I}?

e e'eFk e'cFE

The inequality above is due to the fact that at a local minimum, the minimum interference involving
e € F is < average interference involving e.

5.3 Simulated Annealing

The algorithm is similar to the local greedy algorithm above. The difference is that, here we do not
always choose a channel that minimizes the interference; we sometimes choose a locally suboptimal
channel in order to escape out of local optima. Let T'(t) be a positive sequence that decreases such
that T'(t) — 0, but not too fast — it should satisfy >7°, e~®/T(®) = 0o for a constant b (Aarts and
Korst, 1989). For example, the sequence T'(t) = b/(1 4 In(t)) satisfies these constraints. The key
step is to sample an edge e and a channel k, calculate A(t), the change in interference if c. is set
to k and set
ce = k with probability min {1, e_A(t)/T(t)}

at the tth iteration. In practice, the sequence T'(t) = b/(1+1In(t)) decreases too slowly to make the
procedure computationally tractable. We use a T'(t) that decreases at a rate of 1/t.
5.4 SDP Relaxation and Randomized rounding

On a graph G(V, E,w), inspired by the seminal work of Goemans and Williamson (1995), Frieze
and Jerrum (1997) relax the max-k-cut problem

1
— max Z wij1(c; # c;)
2 eelKIV! (5 p
to the following SDP: K—1
max ——— wi; (1 — Xi5) (17)
X-0 2K -
(i.j)eE

subject to  X;; =1 for i € [|V]]

Once the above SDP is solved, the solution X can be used to get channels as follows. Draw random
vectors z1, ..., zx € RV where the entries are i.i.d standard normal distributed. Then simply set

c; = argmax(f(i, 2j).
J

Frieze and Jerrum (1997) show that the expected max-k-cut objective at ¢ is at least ax times

the optimal objective, where ag > 1 — % This inequality is loose for small K; they show ag >

11
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Figure 2: A network with n = 20 nodes over a 200m x 200m region. Edges in the left graph are
between nodes within interference range. The middle graph shows the edges selected by minimizing
the effective resistance subject to the sector constraint. The right graph shows the topology selected
by nearest neighbors algorithm. Note the isolated node in the top right region.

0.878, 3 > 0.800, g > 0.850. This means, W — El > ag (W — I*), where T is the interference
resulting from the channel assignment ¢ and I* is the minimum interference. In other words,

EI < (1 — ag)W + axl*.

Observe that when I'* is small, the upper bound is smaller than W/ K obtained from random channel
assignment or the local greedy method. Further, the optimal value Wyq, of the SDP relaxation

—

(17) satisfies Wyqp > W* where W* is the optimal max-k-cut value. Noting that I* = W — W*
provides the following lower bound on I* : I* > W — Wsdp-

6 Experiments

Networks are generated as follows. Router locations are sampled uniformly from a square planar
region. Orientations of the routers are sampled uniformly from [0,27). The following hardware
settings determine the pairwise RSSI. Radios on the routers transmit with a power of 11dB. Noise
floor is —85dB and sensitivity is at —79dB. The directional antenna gain is 10 log KdB. The transmit
power and antenna gain are chosen to conform with Wi-Fi Effective Isotropic Radiated Power
(EIRP) regulatory limits. Noise floor and sensitivity are dictated by hardware and these numbers
represent a typical consumer device. For two nodes 7, j, the power received by one node due to the
other is calculated using the Friis tranmission formula

A\ P
p=r(p) oo

where 8 is the path loss exponent, G;,G; are antenna gains and d is the distance between i and
j. In typical environments path loss exponents vary from 2 to 4 (2 is for free space). We assume
B = 3 which is pretty standard for an indoor environment with rich scattering like an office. With
these settings, the transmission range is 71m and the interference range is 113m.

The capacity of a link e, given its SNR is modeled as cap(e) = min(90, 15+6-(SNR—7)))Mb/s
where x4 := max(0, ). This is an approximate continuous model of the data rates specified in IEEE
standard 802.11ac, assuming 40 MHz channels with SGI.

12
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6.1 Results

We simulated 20 networks with n = 20 nodes each in a 200m x 200m region and ran the following
algorithms for topology control:

e ER: minimize effective resistance by solving the integer SDP (8)
e [.2: maximize second smallest eigenvalue of the Laplacian by solving the integer SDP (10)

e LG: maximize second smallest eigenvalue of the Laplacian using the greedy heuristic adapted
from Ghosh and Boyd (2006), as described in Section 4.3

e MC: maximize the sum of capacities of the links selected by solving the ILP (12).
e NN: the nearest neighbor heuristic described in Section 4.1.

For channel assignment, we consider three methods here: the ILP in (13) solved using Gurobi, the
local greedy algorithm (GR) from Section 5.2 and simulated annealing (SA). Simulated annealing
is implemented with an annealing schedule T'(t) = 2e7 W(t) [Wiot - 1/t where Wiy is the sum of all
weights in the conflict graph and W(t) is the max-k-cut value at iteration t. We do not compare
the SDP relaxation method because, as we later find out, it does not work as well as others.

a a time (s)
ILP GR SA | ILP GR SA |ILP GR SA
ER | 2.22 219 220 | 2.37 234 234 | 21 17 17
L2 | 214 203 209 | 2.28 218 222| 30 27 27
LG | 1.04 1.07 1.07 | 1.30 1.34 1.34| 2.9 0.027 0.04
MC | 2.18 217 217 | 233 233 232 | 2.2 0.055 0.073
NN | 091 090 092 1.25 124 1.25| 2.2 0.014 0.028

Table 1: «, @ and time taken to solve, averaged over 20 simulated networks with n = 20 nodes and
10 sets of n/2 demand flows per network. The higher the o or @, the better the solution is.

A | QER{ILP — QA4ILP | QA{ILP — QA4 GR | QAFILP — QA{SA
ER 0 -0.00 £ 0.12 0.02 £ 0.09
L2 -0.03 £+ 0.08 0.09 £ 0.10 0.04 £ 0.09
LG 0.43 + 0.21 0.00 £+ 0.03 -0.01 £+ 0.05
MC -0.00 £+ 0.10 0.04 £ 0.06 0.05 £ 0.08
NN 0.62 £ 0.22 0.01 £ 0.02 0.00 £ 0.01

Table 2: Relative performance of the topology control and channel assignment algorithms on simu-
lated networks with n = 20 nodes. The second column shows mean and standard deviation of the
relative differences (Agr+1LP — QA4+ILP) [ Qbest taken over the 20 simulations, for the topology algo-
rithms A. Smaller value indicates better performance. The third and fourth columns shows same
quantities for the differences due to the choice of channel assignment algorithms.
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Figure 3: « averaged over all simulations is plotted against the mean 1/R and A2(L) over all
stmulations when the edges are weighted with capacities after taking interference into account. Fach
scatter point corresponds to an algorithm. The left two plots are for networks with n = 20 nodes and
the right ones are for n = 50 nodes. Correlation coefficients are 0.9990, 0.9879, 0.9994, 0.9988.

Sample ng = min{25,n/2} distinct pairs of nodes (s;,¢;) and form unit demands d; = 1 between
s; and t; for i € [ng]. Minimum flow « for the simultaneous demands is obtained by solving the
linear program (1). The average flow @ is computed as described in Section 2.3. This procedure is
repeated 10 times and « and @ are averaged. The results are given in Table 1.

We observe that a and the average flow @ behave similarly. So we focus on « with the un-
derstanding that the remarks about « apply to @ as well. The effective resistance based method
ER~+ILP gives the best a. ER, L2 and MC deliver a larger a than LG and NN. « does not vary
significantly between the two channel assignment algorithms for a given topology.

Table 2 compares the algorithms in more detail. We fix the channel assignment algorithm to ILP
and compare the performance of the other topology control algorithms to ER. In each simulation,
we normalize the a’s obtained by all algorithms w.r.t. the largest a. The second column shows by
how much ER is better. The difference and standard deviations strengthen our earlier observation
that ER, L2 and MC are better than LG and NN. Similar behavior is observed when we switch to
local greedy channel assignment. The third and fourth columns show that the performance does
not degrade much if we use GR or SA channel assignment algorithms instead of exactly minimizing
the total interference by ILP in these cases. Results are similar for larger networks of size n = 50
simulated in the same fashion; see Appendix B.

Computationally, ER and L2 based methods are at least an order of magnitude slower because
the SDP problems that need to be solved at the branch-and-bound nodes are expensive. We in fact
limit the number of branch-and-bound iterations to 500. Also we set a time limit of 600 seconds
to solve the interference minimization ILP. For n = 20 nodes, over 20 simulations, the duality gap
remained > 1% in one case for ER and 5 cases for L2. We warm-start ER and L2 branch-and-bound
algorithms with the solution from MC. Without warm-starting, they take much longer.

Variation of o with R and \y(L)

In Figure 3, we plot mean o versus mean inverse effective resistance and mean Ag(L) for all the
algorithms considered. For both network sizes, we clearly see a high correlation between o and the
two spectral properties. If the traffic demands and capacity models considered are applicable, then
we seem to be justified in using ER and L2.

14
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Larger networks

ER and L2 are computationally impractical for larger networks (n > 100) if we solve the integer
SDPs using branch-and-bound and off the shelf SDP solvers. We use MC in such cases as we
have seen that it gives good topologies for small networks. For channel assignment also, exact
solving of (13) does not scale well. We compare GR, SA and the SDP relaxation methods for large
graphs. SDP relaxation of max-k-cut (17) is solved using SDPNAL+ (Yang et al., 2014). Simulated
annealing is implemented with an annealing schedule T'(t) = 27 W (t)/Wiot - 1/t where Wiy is the
sum of all weights in the conflict graph and W(t) is the max-k-cut value at iteration t.

We generate 6 networks of increasing size from n = 50 to n = 2000 nodes. See Table 3.
Simulated annealing takes a few minutes for the largest network we considered with n = 2000
nodes while SDP relaxation takes more than two hours. Further, even though SDP method has a
good theoretical bound, its minimization performance is not as good as the simpler GR and SA
methods. The relationship between « and interference is not clear from here, see Appendix C.

Graph o' Interference (% of W) time (s)

n m m M GR SA SDP | GR SA SDP BND | GR SA  SDP

50 111 63 618 | 024 0.18 0.18 | 43 34 7.3 3.0 |0.109 0.435 7.43
105 261 140 1756 | 0.79 059 072 |79 6.7 133 49 |0.341 0.601 9.36
219 602 305 4282 | 131 134 123 |77 72 136 4.9 1.33 10.8 328
457 1320 652 10127 | 1.22 133 123 |92 79 145 5.6 5.6 25.9 133
956 2931 1365 22777 | 0.42 054 041 |95 85 155 5.7 231 139 747
2000 6151 2909 50128 | 1.87 1.89 1.80 | 9.7 85 155 5.9 38.6 272 8778

Table 3: Performance of local Greedy(GR), Simulated Annealing(SA), SDP relazation followed by
randomized rounding on networks of increasing sizes, with K = 4. M denotes the number of the
edge conflicts. The BND column shows the lower bound on interference obtained by solving the
relaxed SDP. Wiy is the sum of all weights in the conflict graph.

7 Discussion and Future Work

Even though graph spectral properties such as effective resistance and Fiedler value are well-studied
in graph theory, to our knowledge, they are not used in the wireless mesh network community.
Under the traffic demand model, capacity under interference model and routing assumptions, we
have empirically seen that inverse effective resistance and the Fiedler value are highly correlated
with the eventual quality of the network. Therefore looking for the subgraph with high values for
these spectral properties is justified in this setting. For large networks, when optimizing the above
quantities is computationally impractical, one may use the faster maximum capacity heuristic that
we proposed. However, the relation between interference and « is not clear from the experiments.
Running the simulations on a discrete-event simulator such as NS-3 will help us verify these ideas
further. If estimates of link-wise loads are available (say, via metrics collected during network
operation), they can be incorporated into edge weights during both topology control and channel
assignment. Ideas for joint optimization of topology control and channel assignment are discussed
in Appendix A.
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A Joint Optimization

In this section, we propose a method to jointly optimize topology control and channel assignment.
Let g(z, ¢) be a function which takes the set of selected edges z € {0,1}™ and a channel assignment
c and gives the effective capacities for the selected edges, considering interference and a traffic
pattern. For example, in section 2.3, we assumed that all edges in E are active and the capacity
of a link is assumed to be the capacity without interference (but with a standard background
noise) divided by the number of links it interferes with. With the capacities given by g, the desired
properties of the network such as good connectivity and high quality of service may be characterized
in terms of graph spectral properties such as effective resistance and Fiedler value. In other words,
we would like to minimize a spectral property o of the graph:

ze{g}ll]l»lﬁl?}:lezﬁf]ﬁ o(g(z,c)) subject to Agz <. (18)
We may employ an alternating minimization strategy to solve this. For concreteness, let ¢ be the
effective resistance. For the model described in Section 2.3, we have

ZeWe ZeWe

ge(2:€) = num. of edges conflicting with e - Y ercE Leer 1(ce = cer)zer

where we is the capacity of edge e at base noise level without interference from other edges. Given
¢, defining Ioer = e 1(ce = cer), we have ge(z,¢) = zewe/(I2)e, or compactly g(z,c¢) = (z-w)./(I2)
where - denotes element-wise operations. Given ¢, we need to solve

minimize R ((z : w)/(fz)) subject to  Agz <. (19)

The objective is still a convex function of z. We approximate the objective with R((z-w)./I1)). In
other words, to count I(e) = the number of edges conflicting with e, we assume all the edges are
selected. This is the ER topology control algorithm with edge weights reduced by a factor of I(e).

Given z, that is, a connected subgraph, channels are assigned to the subgraph’s edges by
minimizing its effective resistance where the edge weights are w./I(e) with I(e) being the number
of edges conflicting with e under the channel assignment.

B Results for n = 50

We show the results for larger networks with n = 50 nodes generated over a 300m x 300m planar
area. See Table 4 and Table 5. ER, L2 and MC are again better than the other two methods by a
significant margin. There is not much difference between the performances ER, L2 and MC. Again,
the MC+GR combination seems to be very favorable: it is computationally fast and « is the best.

On a closer look though, ER and L2 methods do not converge in the budget of 500 branch-
and-bound iterations. For ER, the duality gap (difference of upper and lower bounds divided by
their sum) is greater than 1% in all 10 simulations and the average duality gap is 3.19%. For L2
the duality gap is larger with a minimum of 5%, maximum of 28% and an average of 14.7%. Given
more iterations, the duality gap should go down for both ER and L2. MC is used to initialize ER
and L2, and that explains why ER, L2 and MC perform very similarly.
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o a time (s)
ILP GR SA |ILP GR SA ILP GR SA
ER | 099 101 1.04|1.01 1.03 1.06 | 1491.7 891.7 891.9
L2 1099 1.03 103|101 1.05 1.05| 702.7 1024 102.5
LG | 056 0.56 0.58 | 0.61 0.60 0.62| 600.1 0.1 0.2
MC | 099 1.07 1.01|1.01 1.09 1.03 | 600.1 0.1 0.3
NN | 025 0.24 0.24 036 0.35 0.35| 600.1 0.1 0.2

Table 4: «, @ and time taken to solve, averaged over 10 simulated networks with n = 50 nodes and
10 sets of n/2 demand flows per network. The higher the o or @, the better the solution is.

A | QER4ILP — QA4ILP | QA4ILP — QA4GR | QA+ILP — QA4SA
ER 0 -0.02 £ 0.08 -0.04 + 0.13
L2 0.00 £ 0.00 -0.01 4+ 0.12 -0.03 + 0.09
LG 0.37 + 0.23 0.01 + 0.04 -0.01 + 0.03
MC 0.00 &+ 0.00 -0.07 £ 0.10 -0.01 £ 0.11
NN 0.64 £+ 0.23 0.01 £ 0.03 0.01 + 0.03

Table 5: Relative performance of the topology control and channel assignment algorithms on simu-
lated networks with n = 50 nodes. The second column shows mean and standard deviation of the
relative differences (Agr+1LP — CA+ILP) [ Qbest taken over the 10 simulations, for the topology algo-
rithms A. Smaller value indicates better performance. The third and fourth columns shows same
quantities for the differences due to the choice of channel assignment algorithms.

C Variation of a with interference

We examine the variation of o with interference in this section. Simulate 20 networks each of size
n = 50,55,60,...,100. After topology selection by MC, we run GR and SA channel assignment
algorithms. Then we plot the difference in average a between GR and SA versus difference in
average interference (divided by Wi, ) between GR and SA. See Figure 4. The correlation coefficient
is —0.52 but the p-value is 0.10 indicating that this relationship requires further investigation.

More Future work

The MC algorithm is fast and is a good alternative to ER and L2 in our settings. But if the graph
has more than say a thousand nodes, the number of flow constraints grows to millions. It will be
interesting to find algorithms that add only O(m) constraints perhaps incrementally.

Effective resistance R;; may be approximated by 1/d; + 1/d; for the purpose of optimization
as it is known to be a good approximation in large graphs under certain conditions (von Luxburg
et al., 2014). This may make the optimization more tractable.

19



DAP Final Report

alpha vs interference

QGR — @54

008
0.014 0013 0012 0.011 001

Igr — Isa

Figure 4: Variation of (difference in) a with (difference in) interference for networks of sizes n =

50,55, ...,100 over 20 simulations.
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