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Abstract
We study parallel and distributed Frank-Wolfe
algorithms; the former on shared memory ma-
chines with mini-batching, and the latter in a
delayed update framework. In both cases, we
perform computations asynchronously whenever
possible. We assume block-separable constraints
as in Block-Coordinate Frank-Wolfe (BCFW)
method (Lacoste-Julien et al., 2013), but our
analysis subsumes BCFW and reveals problem-
dependent quantities that govern the speedups
of our methods over BCFW. A notable fea-
ture of our algorithms is that they do not de-
pend on worst-case bounded delays, but only
(mildly) on expected delays, making them ro-
bust to stragglers and faulty worker threads.
We present experiments on structural SVM and
Group Fused Lasso, and observe significant
speedups over competing state-of-the-art (and
synchronous) methods.

1. Introduction
The classical Frank-Wolfe (FW) algorithm (Frank &
Wolfe, 1956) has witnessed a huge surge of interest re-
cently (Ahipasaoglu et al., 2008; Clarkson, 2010; Jaggi,
2011; 2013). The FW algorithm iteratively minimizes a
smooth function f (typically convex) over a compact con-
vex set M ⊂ Rm. Unlike methods based on projection,
FW uses just a linear oracle that solves minx∈M 〈x, g〉,
which can be much simpler and faster than projection.

This feature underlies the great popularity of FW, which

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

has by now witnessed several extensions such as reg-
ularized FW (Bredies et al., 2009; Harchaoui et al.,
2015; Zhang et al., 2013), linearly convergent special
cases (Garber & Hazan, 2013; Lacoste-Julien & Jaggi,
2015), stochastic versions (Hazan & Kale, 2012; Lafond
et al., 2015; Ouyang & Gray, 2010), and a randomized
block-coordinate FW (Lacoste-Julien et al., 2013).

Despite this progress, parallel and distributed FW variants
are barely known. We fill this gap and develop new asyn-
chronous FW algorithms, for the particular setting where
the constraint setM is block-separable; thus, we solve

min
x

f(x) s.t. x = [x(1), ..., x(n)] ∈
n∏
i=1

Mi, (1)

whereMi ⊂ Rmi (1 ≤ i ≤ n) is a compact convex set and
x(i) are coordinate partitions of x. This setting for FW was
considered in Lacoste-Julien et al. (2013), who introduced
the Block-Coordinate Frank-Wolfe (BCFW) method.

Such problems arise in many applications, notably, struc-
tural SVMs (Lacoste-Julien et al., 2013), routing (LeBlanc
et al., 1975), group fused lasso (Alaı́z et al., 2013;
Bleakley & Vert, 2011), trace-norm based tensor comple-
tion (Liu et al., 2013), reduced rank nonparametric regres-
sion (Foygel et al., 2012), and structured submodular min-
imization (Jegelka et al., 2013), among others.

A standard approach to solve (1) is via block-coordinate
(gradient) descent (BCD), which forms a local quadratic
model for a block of variables, and then solves a projection
subproblem (Beck & Tetruashvili, 2013; Nesterov, 2012;
Richtárik & Takáč, 2015). However, for many problems,
including the ones noted above, projection can be expen-
sive (e.g., projecting onto the trace norm ball, onto base
polytopes Fujishige & Isotani, 2011), and in some cases
even computationally intractable (Collins et al., 2008).

Frank-Wolfe methods excel in such scenarios as they rely
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only on linear oracles that solve mins∈M〈s,∇f(·)〉. For
M =

∏
iMi, this breaks into the n independent problems

min
s(i)∈Mi

〈s(i),∇(i)f(x)〉, 1 ≤ i ≤ n, (2)

where∇(i) denotes the gradient w.r.t. coordinates x(i). It is
obvious that these n subproblems can be solved in parallel
(an idea dating back to at least as early as LeBlanc et al.,
1975). However, having to update all the coordinates at
each iteration is expensive, hampering the use of FW on
big-data problems.

This drawback is partially ameliorated by BCFW (Lacoste-
Julien et al., 2013), which randomly selects a blockMi at
each iteration and performs FW updates. But these updates
are strictly sequential, and do not take advantage of modern
multicore architectures or of distributed clusters.

Contributions. Our main contributions are the following:

• Asynchronous Parallel block-coordinate Frank-Wolfe
algorithms (AP-BCFW) for both shared-memory and
distributed settings. Moreover, AP-BCFW depends only
(mildly) on the expected delay, therefore is robust to
stragglers and faulty worker threads.

• An analysis of the primal and primal-dual convergence
of AP-BCFW and its variants for any minibatch size and
potentially unbounded maximum delay. When the maxi-
mum delay is actually bounded, we show stronger results
using results from load-balancing on max-load bounds.

• Insightful deterministic conditions under which mini-
batching provably improves the convergence rate for a
class of problems (sometimes by orders of magnitude).

• Experiments that demonstrate on real data how our al-
gorithm solves a structural SVM problem several times
faster than the state-of-the-art.

In short, our results contribute towards making FW more
attractive for big-data applications. To add perspective, we
compare our methods to closely related works below; we
refer the reader to Freund & Grigas (2014); Jaggi (2013);
Lacoste-Julien et al. (2013); Zhang et al. (2012) for addi-
tional notes and references.

BCFW and Structural SVM. Our algorithm AP-BCFW
extends and generalizes BCFW to parallel computation.
Our analysis follows the structure in (Lacoste-Julien et al.,
2013), but uses different stepsizes that must be carefully
chosen. Our results contain BCFW as a special case.
Lacoste-Julien et al. (2013) primarily focus on more ex-
plicit (and stronger) guarantee for BCFW on structural
SVM, while we mainly focus on a more general class of
problems; the particular subroutine needed by structural
SVM requires special treatment though (see Appendix C).

Parallelization of sequential algorithms. The idea of par-
allelizing sequential optimization algorithms is not new. It
dates back to (Tsitsiklis et al., 1986) for stochastic gradient
methods; more recently Lee et al. (2014); Liu et al. (2014);
Richtárik & Takáč (2015) study parallelization of BCD.
The conditions under which these parallel BCD meth-
ods succeed, e.g., expected separable overapproximation
(ESO), and coordinate Lipschitz conditions, bear a close
resemblance to our conditions in Section 3.2, but are not
the same due to differences in how solutions are updated
and what subproblems arise. In particular, our conditions
are affine invariant. We provide detailed comparisons to
parallel coordinate descent in Appendix D.5.

Asynchronous algorithms. Asynchronous algorithms that
allow delayed parameter updates have been proposed ear-
lier for stochastic gradient descent (Niu et al., 2011) and
parallel BCD (Liu et al., 2014). We propose the first asyn-
chronous algorithm for Frank-Wolfe. Our asynchronous
scheme not only permits delayed minibatch updates, but
also allows the updates for coordinate blocks within each
minibatch to have different delays. Therefore, each update
may not be a solution of (2) for any single x. Moreover,
we obtain strictly better dependence on the delay param-
eter than predecessors (e.g., an exponential improvement
over Liu et al. (2014)) possibly due to a sharper analysis.

Other related work. While preparing our manuscript, we
discovered the preprint (Bellet et al., 2014) which also stud-
ies distributed Frank-Wolfe. We note that (Bellet et al.,
2014) focuses on Lasso type problems and communication
costs, and hence, is not directly comparable to our results.

Notation. We briefly summarize our notation now. The
vector x ∈ Rm denotes the parameter vector, possibly split
into n coordinate blocks. For block i = 1, ..., n, Ei ∈
Rm×mi is the projection matrix which projects x ∈ Rm
down to x(i) ∈ Rmi ; thus x(i) = Eix. The adjoint operator
E∗i maps Rmi → Rm, thus x[i] = E∗i x(i) is x with zeros
in all dimensions except x(i) (note the subscript x[i]). We
denote the size of a minibatch by τ , and the number of par-
allel workers (threads) by T . Unless otherwise stated, k de-
notes the iteration/epoch counter and γ denotes a stepsize.
Finally, Cτf (and other such constants) denotes some curva-
ture measure associated with function f and minibatch size
τ . Such constants are important in our analysis, and will be
described in greater detail in the main text.

2. Algorithm
In this section, we present an asynchronous parallel
block-coordinate Frank-Wolfe algorithm (AP-BCFW) to
solve (1). Our algorithm is designed to run fully asyn-
chronously on either a shared-memory multicore architec-
ture or on a distributed system.
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Figure 1. Illustration of the AP-BCFW in the distributed (in red) and share-memory settings (in blue). The “cloud” of all worker nodes
(or CPU threads) is abstracted into an oracle that keeps feeding the server (or writing to the memory bus) with updates from solving
possibly approximate (and/or delayed) solutions to (2) on iid uniform random blocks.

Algorithm 1 AP-BCFW: Asynchronous Parallel Block-
Coordinate Frank-Wolfe (distributed)

Input: An initial feasible x(0), mini-batch size τ , a “Cloud”
oracle O satisfying Assumptions A1, A2.
0. Broadcast x(0) to all workers in O.
for k = 1,2,. . . (k is the iteration number) do

1. Keep receiving (i, s(i)) from O until we have τ disjoint
blocks (overwrite if collision1). Denote the index set by S.
2. Update x(k) = x(k−1) + γk

∑
i∈S(s[i] − x

(k−1)

[i] ) with
γk = 2nτ

τ2k+2n
or via line-search.

3. Broadcast x(k) (or just x(k) − x(k−1)) to O.
4. Break if converged.

end for
Output: x(k).

For the shared-memory model, the computational work is
divided amongst worker threads, each of which has access
to a pool of coordinates that it may work on, as well as to
the shared parameters. This setup matches the system as-
sumptions in (Liu et al., 2014; Niu et al., 2011; Richtárik &
Takáč, 2015), and most modern multicore machines permit
such an arrangement.

On a distributed system, the parameter server (Dai et al.,
2013; Li et al., 2013) broadcasts the most recent param-
eter vector periodically to each worker and workers keep
sending updates to the parameter vector after solving the
subroutines corresponding to a randomly chosen parame-
ter. In either setting, we do not wait for slower workers or
synchronize the parameters at any point of the algorithm,
therefore many updates sent from the workers could be cal-
culated based on a delayed parameter.
For convenience, we treat the pool of all workers as a sin-
gle “cloud” oracle O that keeps sending updates of form
{i, s(i)} to the server, where i selects a block and s(i) is an
approximate solution to (2) at the current parameter. More-
over, we assume that

A1. The sequence of i from O is sampled i.i.d. uniformly
from {1, 2, ..., n}.

1We bound the probability of collisions in Appendix D.2.

Assumption A1 is critical as it ensures Step 2 in the algo-
rithm is an unbiased approximation of the batch FW. This
assumption allows the workers to be arbitrarily heteroge-
neous as long as they each sample blocks i.i.d. uniformly
and the time for each worker to produce s(i) does not de-
pend on the block index i. Admittedly, this could be trou-
blesome for some applications with heterogeneous blocks,
we describe ways to enforce A1 in Appendix D.1.

An advantage of this oracle abstraction is its potential ap-
plicability well beyond the per-worker i.i.d. scheme. In
practice, each worker might only have access to a small
subset of [n] and might be doing sequential sampling with
periodic reshuffling. At the aggregate level, however, the
oracle assumptions might still be reasonable approxima-
tions, especially if the number of workers T is large.

Both distributed and shared-memory settings can be cap-
tured under this oracle as is illustrated in Figure 1. Pseu-
docode of our scheme is given in Algorithm 1.

3. Analysis
The three key questions pertaining to Algorithm 1 are:

• Does it converge?

• How fast? How much faster than BCFW (τ = 1)?

• How do delayed updates affect the convergence?

We answer the first two questions in Sections 3.1 and
3.2. Specifically, we show that AP-BCFW converges at
a O(1/k) rate. Our analysis reveals that the speedup of
AP-BCFW over BCFW via parallelization is problem de-
pendent. Intuitively, we show that speedups due to mini-
batching (τ > 1) depend on the average “coupling” of the
objective function f across different coordinate blocks. For
example, if f has a block symmetric diagonally dominant
Hessian, then AP-BCFW converges τ/2 times faster. We
address the third question in Section 3.3, where we estab-
lish convergence results that depend only mildly on the “ex-
pected” delay κ. The bound is proportional to κ when we
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allow the delay to grow unboundedly, and proportional to√
κ when the delay is bounded by a small κmax.

3.1. Main convergence results
We begin by defining a few quantities needed for our anal-
ysis. The first key quantity—also key to the analysis of sev-
eral other FW methods—is the notion of curvature. Since
AP-BCFW updates a subset of coordinate blocks at a time,
we define set curvature for an index set S ⊆ [n] as

C
(S)
f := sup

x∈M,s(S)∈M(S),

γ∈[0,1],
y=x+γ(s[S]−x[S])

2

γ2
(
f(y)− f(x)− (3)

〈y(S) − x(S),∇(S)f(x)〉
)
.

For index sets of size τ , we define the expected set curva-
ture over a uniform choice of subsets as

Cτf := ES:|S|=τ [C
(S)
f ] =

(
n
τ

)−1∑
S⊂[n],|S|=τ

C
(S)
f . (4)

These curvature definitions are closely related to the global
curvature constant Cf of Jaggi (2013) and the coordinate
curvature C(i)

f and product curvature C⊗f of Lacoste-Julien
et al. (2013). Lemma 1 makes this relation more precise.

Lemma 1 (Curvature relations). Suppose S ⊆ [n] with
cardinality |S| = τ and i ∈ S. Then,

i) C
(i)
f ≤ C

(S)
f ≤ Cf ;

ii) 1
nC
⊗
f = C1

f ≤ Cτf ≤ Cnf = Cf .

How the expected set curvature Cτf scales with τ is critical
to bounding the speedup we can expect over BCFW; we
provide a detailed analysis of this speedup in Section 3.2.

The next key object is an approximate linear minimizer.
As in (Jaggi, 2013; Lacoste-Julien et al., 2013), we also
allow the core computational subroutine that solves (2) to
yield an approximate minimizer s(i). Formally, we assume:

A2. There is a constant δ ≥ 0, such that for every k ≥
1, the chosen minibatch S ⊂ [n] of size τ and the
corresponding blocks s(S) := (s(i))i∈S from O obey

E
[
〈s(S),∇(S)f

(k)〉 − min
s′∈M(S)

〈s′,∇(S)f
(k)〉
]
≤
δγkC

τ
f

2
.

(5)
where the expectation is taken over the random se-
quence of minibatch indices and corresponding up-
dates from O in the entire history up to step k.

Assumption A2 is strictly weaker than what is required in
(Jaggi, 2013; Lacoste-Julien et al., 2013), as we only need
the approximation to hold in expectation. With these defini-
tions in hand, we are ready to state our convergence result.

Theorem 2 (Primal Convergence). Say we use a “Cloud”
oracle O that generates a sequence of updates satisfying

A1 and A2. Then, for each k ≥ 0, the iterations in Algo-
rithm 1 and its line search variant obey

E[f(x(k))]− f(x∗) ≤ 2nC
τ2k+2n ,

where C = nCτf (1 + δ) + f(x(0))− f(x∗).

At a first glance, the n2Cτf term in the numerator might
seem bizarre, but as we will see in the next section, Cτf can
be as small as O( τn2 ). This is the scale of the constant one
should keep in mind to compare the rate to other methods,
e.g., coordinate descent. Also note that so far this conver-
gence result does not explicitly work for delayed updates,
which we will analyze in Section 3.3 separately via the ap-
proximation parameter δ from (5).

For FW methods, one can also easily obtain a conver-
gence guarantee in an appropriate primal-dual sense. To
this end, we introduce our version of the surrogate duality
gap (Jaggi, 2013); we define this as

g(x) := max
s∈M
〈x− s,∇f(x)〉 (6)

=

n∑
i=1

max
s(i)∈M(i)

〈x(i) − s(i),∇(i)f(x)〉 =

n∑
i=1

g(i)(x).

To see why (6) is actually a duality gap, note that since f is
convex, the linearization f(x) + 〈s− x,∇f(x)〉 is always
smaller than the function evaluated at any s, so that

g(x) ≥ 〈x− x∗,∇f(x)〉 ≥ f(x)− f(x∗).

This duality gap is obtained for “free” in batch FW, but
not in BCFW or AP-BCFW. Here, we only have an unbi-
ased estimate n

|S|
∑
i∈S g

(i)(x). For large τ , this estimate is
close to g(x) with high probability (McDiarmid’s Inequal-
ity), and can still be useful as a stopping criterion.

Theorem 3 (Primal-Dual Convergence). Assume O sat-
isfies A1 and A2. Define the expected surrogate dual-
ity gap gk := Eg(x(k)) and weighted average ḡk :=

2
K(K+1)

∑K
k=1 kgk for the sequence of parameters x(k) in

Algorithm 1. Then for very K ≥ 1, there exists k∗ ∈ [K]
such that

gk∗ ≤ ḡK ≤
6nC

τ2(K + 1)
,

with the same C in Theorem 2.

Relation with FW and BCFW: The above convergence
guarantees can be thought of as an interpolation between
BCFW and batch FW. If we take τ = 1, they give exactly
the convergence guarantee for BCFW (Lacoste-Julien et al.,
2013, Theorem 2), and if we take τ = n, we can drop
f(x(0)) − f(x∗) from C (with a small modification in the
analysis) and recover the classic batch guarantee as in Jaggi
(2013).
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Dependence on initialization: Unlike classic FW, the con-
vergence rate of our method depends on the initialization.
When h0 := f(x(0))−f(x∗) ≥ nCτf and τ2 < n, the con-
vergence is slower by a factor of n

τ2 . The same concern was
also raised in (Lacoste-Julien et al., 2013) with τ = 1. We
can actually remove the f(x(0)) − f(x∗) from C as long
as we know that h0 ≤ nCτf . By Lemma 1, the expected
set curvature Cτf increases with τ , so the fast convergence
region becomes larger when we increase τ . In addition, if
we pick τ2 > n, the rate of convergence is not affected by
initialization anymore.

Speedup: The reader may have noticed the n2Cτf term in
the numerator. This is undesirable as n can be large (for
instance, in structural SVM n is the total number of data
points). The saving grace in BCFW is that when τ = 1,
Cτf is as small as O(n−2) (see Lacoste-Julien et al., 2013,
Lemmas A1 and A2), and it is easy to check that the depen-
dence on n is the same even for τ > 1. What really matters
is how much speedup one can achieve over BCFW, and this
relies critically on how Cτf depends on τ . Analyzing this
dependence is our main focus in the next section.

3.2. Effect of parallelism / mini-batching

To understand when mini-batching is meaningful and to
quantify its speedup, below we take a more careful look
at the expected set curvature Cτf . In particular, we analyze
and present a set of insightful conditions that govern its de-
pendence on τ . The key idea is to quantify how strongly
different coordinate blocks interact with each other.

To begin, assume that there exists a positive semidefinite
matrix H such that for any x, y ∈M

f(y) ≤ f(x)+〈y−x,∇f(x)〉+ 1

2
(y−x)TH(y−x). (7)

The matrix H may be viewed as a generalization of the
gradient’s Lipschitz constant (a scalar) to a matrix. For
quadratic functions f(x) = 1

2x
TQx + cTx, we can take

H = Q. For twice differentiable functions, we can choose
H ∈ {K | K � ∇2f(x), ∀x ∈M}.

Since x = [x1, . . . , xn] (we write xi instead of x(i) for
brevity), we separate H into n × n blocks; so Hij repre-
sents the block corresponding to xi and xj such that we
can take the product xTi Hijxj . Now, we define a bound-
edness parameter Bi for every i, and an incoherence con-
dition with parameter µij for every block coordinate pair
Mi,Mj such that

Bi = sup
xi∈Mi

xTi Hiixi, µij = sup
xi∈Mi,xj∈Mj

xTi Hijxj ,

B = Ei∼Unif([n])Bi, µ = E(i,j)∼Unif({(i,j)∈[n]2,i6=j})µij .

Using these quantities, we obtain the following bound on
the expected set-curvature.

Theorem 4. Cτf ≤ 4(τB + τ(τ − 1)µ) for any τ ∈ [n].

It is clear that when the incoherence term µ is large, the
expected set curvature Cτf is proportional to τ2, and when
µ is close to 0, thenCτf is proportional to τ . In other words,
when the interaction between coordinates block is small,
one gains from parallelizing BCFW. This is analogous to
the situation in parallel coordinate descent (Liu et al., 2014;
Richtárik & Takáč, 2015) and we will compare the rate of
convergence explicitly with them in Appendix D.5.

Corollary 5. Consider a matrixM withBi on the diagonal
and µij on the off-diagonal. If M is symmetric diagonally
dominant (SDD), i.e., the sum of absolute off-diagonal en-
tries in each row is no greater than the diagonal entry, then
Cτf is proportional to τ .

The above result depends on the parameters B and µ.
In Appendix D.4, we provide two concrete examples
(multi-class classification with structural SVM and graph
fused lasso) where we can express B and µ as problem-
dependent quantities and provide explicit upper bounds of
Cτf . In both examples, we show that choosing larger τ
yields faster convergence (at least up to some point).

3.3. Convergence with delayed updates

Often due to the delays in communication, some updates
pushed back by workers are calculated based on delayed
parameters that were broadcast earlier. Dropping these up-
dates or enforcing synchronization will create a huge sys-
tem overhead especially when the size of the minibatch is
small. Ideally, we want to just accept the delayed updates
as if they were correct, and broadcast new parameters to
workers without locking the updates. The question is, does
this idea work?

In this section, we model delays from updates to be i.i.d.
from an unknown distribution that can depend on k, but
not on blocks. Under these assumptions, we show that the
effect of delayed updates can be treated as an approximate
oracle that satisfies A2 in (5) with some specific constant
δ that depends on the expected delay κ and the maximum
delay parameter κmax (when it exists). This allows us to
invoke results in Section 3.1 to establish convergence for
delayed updates. The results also depend on the following
diameter and gradient Lipschitz constant for a norm ‖ · ‖

D
(S)
‖·‖ = sup

x,y∈M(S)

‖x− y‖,

L
(S)
‖·‖ = sup

x,y∈M,y=x+s
‖s‖≤γ,
s∈span(M(S))

1

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉),

Dτ
‖·‖ = max

S⊂[n]
∣∣|S|=mD(S)

‖·‖ , and Lτ‖·‖ = max
S⊂[n]||S|=m

L
(S)
‖·‖ .
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Theorem 6 (Delayed Updates as Approximate Oracle).
For each norm ‖ · ‖ of choice, let Dτ

‖·‖ and Lτ‖·‖ be de-
fined above. Let the a random variable of delay be κ and
let κ := Eκ be the expected delay from any worker. More-
over, assume that the algorithm drops any updates with de-
lay greater than k/2 at iteration k. Then for the version of
the algorithm without line-search, the delayed oracle will
produce s ∈M(S) such that (5) holds with

δ = 4κτL1
‖·‖D

1
‖·‖D

τ
‖·‖/(C

τ
f ). (8)

Furthermore, if we assume that there is a κmax such that
P(κ ≤ κmax) = 1 for all k, then (5) holds with δ =

cn,τκmax

4τL1
‖·‖D

1
‖·‖ED

κτ
‖·‖

Cτf
where

cn,τκmax =


3 logn

log(n/(τκmax))
if κmaxτ < n/ log n,

O(log n) if κmaxτ = O(n log n),
(1+o(1))τκmax

n if κmaxτ � n log n.
(9)

The results above imply that AP-BCFW (without line-
search) converges in both primal optimality and in duality
gap according to Theorems 2 and 3 with the same O(1/k)
rate. Comparing to versions that solve (2) exactly, the de-
layed version has an additional additive factor in the nu-
merator of form

4nκτL1
‖·‖D

1
‖·‖D

τ
‖·‖ or O

(
τL1
‖·‖D

1
‖·‖ED

κτ
‖·‖ log n

)
with the additional assumption that κmax = O(n log n/τ).

Note that (8) depends on the expected delay rather than the
maximum delay, and as k → ∞ we allow the maximum
delay to grow unboundedly. This allows the system to au-
tomatically deal with heavy-tailed delay distributions and
sporadic stragglers. When we do have a small bounded
delay, we produce stronger bounds (9) with a multiplier
that is either a constant (when τκmax = O(n1−ε) for any
ε > 0), proportional to log n (when τκ ≤ n) or propor-
tional to τκmax

n (when τκ is large). The whole expression
often has sublinear dependence on the expected delay κ.
For instance, we prove in the appendix the following:
Lemma 7. When ‖ · ‖ is Euclidean norm

EDκτ
‖·‖ ≤ D

dEκτe
‖·‖ ≤

√
dEκeDτ

‖·‖.

The bound is proportional to
√
κ when κ = Ω(1). This

is strictly better than Niu et al. (2011) which has quadratic
dependence on κmax and Liu et al. (2014) which has expo-
nential dependence on κmax. Our mild κmax dependence
for the cases τκmax > n suggests that the (9) remains pro-
portional to

√
κ even when we allow the maximum delay

parameter to be as large as n/τ or larger without signif-
icantly affecting the convergence. Note that this allows
some workers to be delayed for several data passes.

Observe that when τ = 1, where the results reduces
to a lock-free variant for BCFW, δ becomes proportional
to L1

‖·‖[D
1
‖·‖]

2/C1
f . This is always greater than 1 (see

e.g., Jaggi, 2013, Appendix D) but due to the flexibility
of choosing the norm, this quantity corresponding to the
most favorable norm is typically a small constant. For
example, when f is a quadratic function, we show that
C1
f = L1

‖·‖[D
1
‖·‖]

2 (see Appendix D.3). When τ > 1,
τL1
‖·‖D

1
‖·‖D

τ
‖·‖/C

τ
f is often O(

√
τ) for an appropriately

chosen norm. Therefore, (8) and (9) are roughly in the or-
der of O(κ

√
τ) and O(

√
κτ) respectively2.

Lastly, we remark that κ and τ are not independent. When
we increase τ , we update the parameters less frequently and
κ gets smaller. In a real distributed system, with constant
throughput in terms of number of oracle solves per second
from all workers. If the average delay is a fixed number in
clock time specified by communication time. Then τκ is
roughly a constant regardless how τ is chosen.

4. Experiments
In this section, we experimentally demonstrate perfor-
mance gains from the three key features of our algorithm:
minibatches of data, parallel workers, and asynchrony.

4.1. Minibatches of Data
We conduct simulations to study the effect of mini-batch
size τ , where larger τ implies greater degrees of paral-
lelism as each worker can solve one or more subproblems
in a mini-batch. In our simulation, we re-use the struc-
tural SVM setup from Lacoste-Julien et al. (2013) for a se-
quence labeling task on a subset of the OCR dataset (Taskar
et al., 2004) (n = 6251, d = 4082). The dual problem has
block-separable probability simplex constraint therefore al-
lowing us to run AP-BCFW, and each subproblem can be
solved efficiently using the Viterbi algorithm (more details
are included in Appendix C). The speedup on this dataset is
shown in Figure 2(a). For this dataset, we use λ = 1 with
weighted averaging and line-search throughout (no delay is
allowed). We measure the speedup for a particular τ > 1
in terms of the number of iterations (Algorithm 1) required
to converge relative to τ = 1, which corresponds to BCFW.
Figure 2(a) shows that AP-BCFW achieves linear speedup
for mini-batch size up to τ ≈ 50. Further speedup is sensi-
tive to the convergence criteria.

In our simulation for Group Fused Lasso, we generate a
piecewise constant dataset of size (n = 100, d = 10, in
Eq. 2) with Gaussian noise. We use λ = 0.01 and a primal
suboptimality threshold as our convergence criterion. At
each iteration, we solve τ subproblems (i.e. the mini-batch
size). Figure 2(b) shows the speed-up over τ = 1 (BCFW).

2For details, see our discussion in Appendix D.3
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(a) Structural SVM (n=6251)

0 20 40 60 80 100
0

20

40

60

80

100

τ

sp
ee

du
p 

ov
er

 τ=
1

Speedup on Group fused lasso

 

 

primal threshold=f*+0.01
primal threshold=f*+0.05
primal threshold=f*+0.10
y=x

(b) Group Fused Lasso (n=100)

Figure 2. Performance improvement with τ for (a) Structual SVM
on the OCR dataset (Lacoste-Julien et al., 2013; Taskar et al.,
2004) and (b) Group Fused Lasso on a synthetic dataset. f∗ de-
notes primal optimum (the “primal” problem is actually referring
to the dual problem in both cases). The performance metric here
is the number of iterations to achieve ε-suboptimality.

Similar to the structural SVM, the speedup is almost perfect
for small τ (τ ≤ 55) but tapers off for large τ to varying
degrees depending on the convergence thresholds.

4.2. Shared Memory Parallel Workers

We implement AP-BCFW for the structural SVM in a mul-
ticore shared-memory system using the full OCR dataset
(n = 6877). All shared-memory experiments were im-
plemented in C++ and conducted on a 16-core machine
with Intel(R) Xeon(R) CPU E5-2450 2.10GHz processors
and 128G RAM. We first fix the number of workers at
T = 8 and vary the mini-batch size τ . Figure 3(a) shows
the absolute convergence (i.e. the convergence per sec-
ond). We note that AP-BCFW outperforms single-threaded
BCFW under all investigated τ , showing the efficacy of
parallelization. Within AP-BCFW, convergence improves
with increasing mini-batch sizes up to τ = 3T , but wors-
ens when τ = 5T as the error from the large mini-batch
size dominates additional computation. The optimal τ for
a given number of workers (T ) depends on both the dataset
(how “coupled” are the coordinates) and also system im-
plementations (how costly is the synchronization).

Since speedup for a given T depends on τ , we search for
the optimal τ across multiples of T to find the best speedup
for each T . Figure 3(b) shows faster convergence of AP-
BCFW over BCFW (T = 1) when T > 1 workers are avail-
able. It is important to note that the x-axis is wall-clock
time rather than the number of epochs.

Figure 3(c) shows the speedup with varying T . AP-BCFW
achieves near-linear speed up for smaller T . The speed-
up curve tapers off for larger T for two reasons: (1) Large
T incurs higher system overheads, and thus needs larger
τ to utilize CPU efficiently; (2) Larger τ incurs errors as
shown in Fig. 2(a). If the subproblems were more time-
consuming to solve, the affect of system overhead would
be reduced. We simulate harder subproblems by simply
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Figure 4. Speedup with parallelization on a synthetic OCR
dataset. Left plot shows the decay of primal suboptimality and
the right one shows the speedup.

solving them m ∼Uniform(5, 15) times instead of just
once. The speedup is nearly perfect as shown in Figure
3(d). Again, we observe that a more generous conver-
gence threshold produces higher speedup, suggesting that
resource scheduling could be useful (e.g., allocate more
CPUs initially and fewer as algorithm converges).

We repeated the experiment on a larger synthetic dataset
with n = 103155, d = 4082 created from the above men-
tioned OCR data as follows: for each of the 6877 words,
generate 15 words with noisy images for characters, where
the noise is introduced by flipping the bits of the images
with probability 0.05 independently. The speedup with par-
allelization, shown in Figure 4, essentially follows the same
pattern as it did in Figures 3c, 3b for original data.

4.3. Performance gain with asynchronous updates

We compare AP-BCFW with a synchronous version of the
algorithm (SP-BCFW) where the server assigns τ/T sub-
problems to each worker, then waits for and accumulates
the solutions before proceeding to the next iteration. We
simulate workers of varying slow-downs in our shared-
memory setup by assigning a return probability pi ∈ (0, 1]
to each worker wi. After solving each subproblem, worker
wi reports the solution to the server with probability pi.
Thus, a worker with pi = 0.8 will drop 20% of the updates
on average corresponding to 20% slow-down.

We use T = 14 workers for the experiments in this section.
We first simulate the scenario with just one straggler with
return probability p ∈ (0, 1] while the other workers run at
full speed (p = 1). Figure 5(a) shows that the average time
per effective datapass (over 20 passes and 5 runs) of AP-
BCFW stays almost unchanged with slowdown factor 1/p
of the straggler, whereas it increases linearly for SP-BCFW.
This is because AP-BCFW relies on the average available
worker processing power, while SP-BCFW is only as fast
as the slowest worker.

Next, we simulate a heterogeneous environment where the
workers have varying speeds. While varying a parameter
θ ∈ [0, 1], we set pi = θ + i/T for i = 1, . . . , T . Fig-
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Figure 3. From left: (a) Primal suboptimality vs wall-clock time using 8 workers (T = 8) and various mini-batch sizes τ . (b) Primal
suboptimality vs wall-clock time for varying T with best τ chosen for each T separately. (c) Speedup via parallelization with the best τ
chosen among multiples of T (T, 2T, ...) for each T . (d) The same with longer subproblems.
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Figure 5. Average time per data pass in asynchronous and syn-
chronous modes for two cases: one worker is slow with return
probability p (left); workers have return probabilities (pis) uni-
formly in [θ, 1] (right). Times normalized separately for AP-
BCFW, SP-BCFW w.r.t. to where workers run at full speed.

ure 5(b) shows that AP-BCFW slows down only by a factor
of 1.4 compared to the no-straggler case. Assuming that
the server and worker each take about half the (wall-clock)
time on average per epoch, we would expect the run time to
increase by 50% if the average worker speed halves, which
is the case if θ = 0 (i.e., 1

θ → ∞). Thus, a factor of 1.4 is
reasonable. The performance of SP-BCFW is almost iden-
tical to that in the previous experiment as its speed is deter-
mined by the slowest worker. Our experiments show that
AP-BCFW is robust to stragglers and system heterogeneity.

4.4. Convergence under unbounded heavy-tailed delay

In this section, we illustrate the mild effect of delay on con-
vergence by randomly drawing an independent delay vari-
able for each worker. For simplicity, we use τ = 1 (BCFW)
on the group fused lasso problem from Section 4.1. We
sample κ using either a Poisson distribution or a heavy-
tailed Pareto distribution (round to the nearest integer). The
Pareto distribution is chosen with shape parameter α = 2
and scale parameter xm = κ/2 such that Eκ = κ and
Varκ = ∞. During the experiment, at iteration k, any
updates that were based on a delay greater than k/2 are
dropped (as our theory stipulates). The results are shown in
Figure 6. Observe that for both cases, the impact of delay
is rather mild. With expected delays up to 20, the algorithm
only takes fewer than twice as many iterations to converge.
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Figure 6. Illustrations of the convergence BCFW with delayed up-
dates. On the left, we have the delay sampled from a Poisson
distribution. The figure on the right is for delay sampled from
a Pareto distribution. We run each problem until the duality gap
reaches 0.1.

5. Conclusion
In this paper, we propose an asynchronous paral-
lel generalization of the block-coordinate Frank-Wolfe
method (Lacoste-Julien et al., 2013), analyze its conver-
gence and provide intuitive conditions under which it has
a provable speed-up over BCFW. We also show that the
method is resilient to delayed updates in the distributed
setting. The convergence bound depends only linearly on
the expected delay and possibly sublinearly if the delay
is bounded, yielding an exponential improvement over the
dependence on the same parameter in parallel coordinate
descent (Liu et al., 2014). The asynchronous updates al-
low our method to be robust to stragglers and node fail-
ure as the speed of AP-BCFW depends on average worker
speed instead of the slowest. We demonstrate the effective-
ness of the algorithm in structural SVM and Group Fused
Lasso with both controlled simulation and real-data experi-
ments on a multi-core workstation. For the structural SVM,
it leads to a speed-up over the state-of-the-art BCFW by
an order of magnitude using 16 parallel processors. As
a projection-free FW method, we expect our algorithm to
be very competitive in large-scale constrained optimization
problems, especially when projections are expensive. Fu-
ture work includes analysis for the strongly convex setting,
the non-convex setting and ultimately releasing a general
purpose software package for practitioners to deploy in Big
Data applications.
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This is the supplementary document to the paper: “Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms”.

A. Convergence analysis
We provide a self-contained convergence proof in this section. The skeleton of our convergence proof follow closely from
Lacoste-Julien et al. (2013) and Jaggi (2013). There are a few subtle modification and improvements that we need to add
due to our weaker definition of approximate oracle call that is nearly correct only in expectation. The delayed convergence
is new and interesting for the best of our knowledge, which uses a simple result in “load balancing” (Mitzenmacher, 2001).

Note that for the cleanness of the presentation, we focus on the primal and primal-dual convergence of the version of the
algorithms with pre-defined step sizes and additive approximate subroutine, it is simple to extend the same analysis for
line-search variant and multiplicative approximation.

A.1. Primal Convergence

Lemma 8. Denote the gap between current f(x(k)) and the optimal f(x∗) to be h(x(k)). The iterative updates in Algo-
rithm 1(with arbitrary fixed stepsize γ or by the line search) obey

Eh(x(k+1)) ≤ (1− γτ

n
)Eh(x(k)) +

γ2(1 + δ)

2
Cτf .

where the expectation is taken over the joint randomness all the way to iteration k + 1.

Proof. Let x := x(k) for notational convenience. We prove the result for Algorithm 1 first. Apply the definition of C(S)
f

and then apply the definition of the additive approximation in (5), to get

f(x
(k+1)
line−search) ≤ f(x(k+1)

γ ) = f(x+ γ
∑
i∈S

(s[i] − x[i]))

≤ f(x) + γ
∑
i∈S
〈s[i] − x[i],∇[i]f(x)〉+

γ2

2
C

(S)
f

= f(x) + γ〈s[S] − x[S],∇[S]f(x)〉+
γ2

2
C

(S)
f

Subtract f(x∗) on both sides we get:

h(x(k+1)) ≤ h(x(k)) + γ〈s[S] − x
(k)
[S] ,∇[S]f(x(k))〉+

γ2

2
C

(S)
f

Now take the expectation over the entire history then apply (5) and definition of the surrogate duality gap (6), we obtain

Eh(x(k+1)) ≤Eh(x(k)) + E
{
γ〈s[S] − x

(k)
[S] ,∇[S]f(x(k))〉

}
+ E

γ2

2
C

(S)
f

=Eh(x(k)) + γE
{
〈s[S],∇[S]f(x(k))〉 − min

s∈M(S)
〈s,∇[S]f(x(k))〉

}
− γE

{
〈x(k)[S] ,∇[S]f(x(k))〉 − min

s∈M(S)
〈s,∇[S]f(x(k))

}
+
γ2

2
Cτf

≤Eh(x(k)) +
γ2δ

2
Cτf − γExkES|xk

∑
i∈S

g(i)(x(k)) +
γ2

2
Cτf

=Eh(x(k)) +
γ2δ

2
Cτf − γExk

τ

n
g(x(k)) +

γ2

2
Cτf (10)

≤(1− γτ

n
)Eh(x(k)) +

γ2(1 + δ)

2
Cτf .

The last inequality follows from the property of the surrogate duality gap g(x(k)) ≥ h(x(k)) due to the fact that g(x) =
f(x)− f∗(·). This completes the proof of the descent lemma.
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Now we are ready to state the proof for Theorem 2.

Proof of Theorem 2. We follow the proof in Theorem C.1 in (Lacoste-Julien et al., 2013) to prove the statement for
Algorithm 1. The difference is that we use a different and carefully chosen sequence of step size.

Take C = h0 + n(1 + δ)Cτf , and denote Eh(x(k)) as hk for short hands. The inequality in Lemma 8 simplifies to

hk+1 ≤
(

1− γτ

n

)
hk +

γ2

2n
C.

Now we will prove hk ≤ 2nC
τ2k+2n for γk = 2nτ

τ2k+2n by induction. The base case k = 0 is trivially true since C > h0.
Assuming that the claim holds for k, we apply the induction hypothesis and the above inequality is reduced to

hk+1 ≤ (1− γτ

n
)hk +

γ2

2n
C ≤ 2nC

τ2k + 2n

[
1− γτ

n
+
τ2k + 2n

2n

γ2

2n

]
=

2nC

τ2k + 2n

[
τ2k + 2n

τ2k + 2n
− 2nτ

τ2k + 2n
· τ
n

+
(2nτ)2

4n2(τ2k + 2n)

]
=

2nC

τ2k + 2n
· τ

2k + 2n− τ2

τ2k + 2n
≤ 2nC

τ2k + 2n
· τ

2k + 2n− τ2 + τ2

τ2k + 2n+ τ2

=
2nC

τ2(k + 1) + 2n
.

This completes the induction and hence the proof for the primal convergence for Algorithm 1.

A.2. Convergence of the surrogate duality gap

Proof of Theorem 3. We mimic the proof in (Lacoste-Julien et al., 2013, Section C.3) for the analogous result closely, and
we will use the same notation for hkand C as in the proof for primal convergence, moreover denote gk = Eg(x(k)) First
from (10) in the proof of Lemma 8, we have

hk+1 ≤ hk −
γτ

n
gk +

γ2

2n
C.

Rearrange the terms, we get

gk ≤
n

γτ
(hk − hk+1) +

γC

2τ
. (11)

The idea is that if we take an arbitrary convex combination of {g1, ..., gK}, the result will be within the convex hull,
namely between the minimum and the maximum, hence proven the existence claim in the theorem. By choosing weight
ρk := k/SK where normalization constant SK = K(K+1)

2 and taking the convex combination of both side of (11), we
have

E( min
k∈[K]

gk) ≤
K∑
k=0

ρkgk ≤
n

τ

K∑
k=1

ρk(
hk
γk
− hk+1

γk
) +

K∑
k=0

ρkγk
C

2τ

=
n

τ
(
h0ρ0
γ0
− hK+1

ρk
γk

) +
n

τ

K−1∑
k=0

hk+1(
ρk+1

γk+1
− ρk
γk

) +

K∑
k=0

ρkγk
C

2τ

≤ n

τ

K−1∑
k=0

hk+1(
ρk+1

γk+1
− ρk
γk

) +

K∑
k=0

ρkγk
C

2τ
(12)

Note that ρ0 = 0, so we simply dropped a negative term in last line. Applying the step size γk = 2nτ/(τ2k + 2n), we get

ρk+1

γk+1
− ρk
γk

=
k + 1

SK

τ2(k + 1)2n

2nτ
− k

SK

τ2k + 2n

2nτ

=
1

2nSKτ

[
τ2(k + 1)2 + 2n(k + 1)− τ2k2 − 2nk

]
=
τ2(2k + 1) + 2n

2nSKτ
.
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Plug the above back into (12) and use the bound hk+1 ≤ 2nC/(τ2(k + 1) + 2n), we get

E( min
k∈[K]

gk) ≤
K∑
k=0

ρkgk ≤
nC

τ2SK

K−1∑
k=0

τ2(2k + 2) + 2n

2n

2n

τ (2k + 1) + 2n
+

K∑
k=0

k

SK

2nτ

τ2k + 2n

C

2τ

=
nC

τ2SK

[
K−1∑
k=0

(1 +
τ2

τ2(k + 1) + 2n
) +

K∑
k=1

kτ2

(τ2k + 2n)

]

≤ nC

τ2SK
[2K +K] =

2nC

τ2(K + 1)
· 3.

This completes the proof for K ≥ 1.

Proof of Convergence with Delayed Gradient The idea is that we are going to treat the updates calculated from the
delayed gradients as an additive error and then invoke our convergence results that allow the oracle to be approximate. We
will first present a lemma that we will use for the proof of Theorem 6.

Lemma 9. Let x ∈ M, ‖ · ‖ be a norm, Diam(M)‖·‖ ≤ D, L be the gradient Lipschitz constant of f with respect to the
given norm ‖ · ‖. Moreover, let x′ be at most κ steps away from x and the largest stepsize in the past κ steps, and

x∗ := argmin
s∈M

〈s,∇f(x)〉

x̃ := argmin
s∈M

〈s,∇f(x′)〉

Then, we have
〈s̃− x,∇f(x)〉 ≤ 〈s∗ − x,∇f(x)〉+ γκD2L

Proof. Because s̃ minimizes 〈s,∇f(x̃)〉 over s ∈M and s∗ is feasible, we can write

〈s∗ − s̃,∇f(x̃)〉 ≥ 0.

Using this and Hölder’s inequality, we can write

〈s̃− x,∇f(x)〉 − 〈s∗ − x,∇f(x)〉 ≤ 〈s̃− s∗,∇f(x)−∇f(x̃)〉 ≤ ‖s̃− s∗‖‖∇f(x̃)−∇f(x)‖∗ ≤ DL‖x̃− x‖.

It remains to bound ‖x̃− x‖.

‖x̃− x‖ =

∥∥∥∥∥x̃− x̃−
κ∑
i=1

γ−i(s−i − x−i)

∥∥∥∥∥ ≤ γκmax
i
‖s−i − x−i‖ ≤ γκD,

where we used the fact that x is at most κ steps away from x̃. Assume γ−i is the stepsize used and 〈s−i, x−i〉 are the actual
updates that had been performed in the nearest ith parameter update before we get to x.

The second lemma that we need is the following.

Lemma 10. LetM be a convex set. Let x0 ∈M. Let m be any positive integer. For i = 1, ...,m, let xi = xi−1 + γi(si−
xi−1) for some 0 ≤ γi ≤ 1 and si ∈M. Then there exists an s ∈M and γ ≤

∑m
i=1 γi, such that xm = γ(s− x0) + x0.

Proof. We prove by induction. When m = 1, s = s1 and γ = γ1. Assume for any m = k− 1, that the claim holds assume
the condition is true, then by the recursive formula,

xk = xk−1 + γk(sk − xk−1)

= x0 + γ(s− x0) + γk[sk − x0 − γ(s− x0)]

= x0 − (γ + γk − γkγ)x0 + (γ − γkγ)s+ γksk

= x0 + (γ + γk − γkγ)

[
γ − γkγ

γ + γk − γkγ
s+

γk
γ + γk − γkγ

sk − x0
]

= x0 + (γ + γk − γkγ)(s′ − x0)
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Note that s′ is a convex combination of sk and s therefore by convexity s′ ∈M. Substitute γ ≤
∑k−1
i=1 γi, we get

γ + γk − γkγ ≤
k∑
i=1

γi.

This completes the inductive proof for all m.

The third Lemma that we will need is the following characterization of the expected “max load” in randomized load
balancing.

Lemma 11 ((Mitzenmacher, 2001; Raab & Steger, 1998)). Suppose m balls are thrown independently and uniformly at
random into n bins. Then, the maximum number of balls in a bin Y satisfies

EY ≤


3 logn

log(n/m) if m < n/ log n,

c′ log n if m < cn log n,

m
n +O(

√
2m
n log n) if m� n log n.

where c′ is a constant that depends only on c.

Proof of Theorem 6. The proof involves a sharpening of the Lemma 9 for the BCFW and minibatch setting, where x ∈
M = M(1) × ... × M(n) is a product domain. The proof idea is to exploit this property. Let the current update be
on coordinate block index subset S. For each j ∈ S, let the corresponding worker be delayed by κj steps, and the
corresponding parameter vector be x̃. κj is a random variable.

As in the proof of Lemma 9, we can bound the suboptimality of the approximate subroutine for solving problem j:

Suboptimality(s̃j) ≤ 〈s̃j − s∗j ,∇jf(x̃)−∇jf(x)〉 ≤ ‖s̃j − s∗j‖‖∇jf(x̃)−∇jf(x)‖∗

≤ D(j)
‖·‖L

(j)
‖·‖‖x̃− x‖ = D

(j)
‖·‖L

(j)
‖·‖

∥∥∥∥∥
κj∑
i=1

γ−i(s−i − x−i)

∥∥∥∥∥ (13)

≤ D1
‖·‖L

1
‖·‖

κj∑
i=1

γ−i ‖(s−i − x−i)‖

≤ D1
‖·‖L

1
‖·‖

κj∑
i=1

γ−iD
τ
‖·‖ ≤ κjγ−κjD1

‖·‖L
1
‖·‖D

τ
‖·‖.

Let κ := Eκj , take expectation on both sides we get

E Suboptimality(s̃j) ≤ E(κjγ−κj )D1
‖·‖L

1
‖·‖D

τ
‖·‖

Repeat the same argument for each i ∈ S, we get

E Suboptimality(s̃) ≤ E(κjγ−κj )τD1
‖·‖L

1
‖·‖D

τ
‖·‖.

To put it into the desired format in (5), we solve the following inequality for δ

γδCτf
2
≥ E(κjγ−κj )τDτ

‖·‖D
1
‖·‖L

1
‖·‖

we get

δ ≥ 2τ

Cτf
E
(
κjγ−κj

γ

)
Dτ
‖·‖D

1
‖·‖L

1
‖·‖.

By the specification of the stepsizes, we can calculate for each k,

γ−κj
γ

=
τ2k + 2n

τ2(max(k − κj , 0)) + 2n
.
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Note that we always enforce κj to be smaller than k
2 (otherwise the update is dropped), we can therefore upper bound

E(
κjγ−κj

γ ) by 2κ. This gives us the the first bound (9) on δ in Theorem 6.

To get the second bound on δ, we start from (13) and bound ‖x̃ − x‖ differently. Let S be the set of τκj coordinate
blocks that were updated in the past κj iterations. In the cases where fewer than τκj blocks were updated, just arbitrarily
pick among the coordinate blocks that were updated 0 times so that |S| = τκj . x̃ − x is supported only on S. Suppose
coordinate block i ∈ S is updated by m times, as below

x̃(i) =

m∑
j=1

γj(sj − [xj ](i))

for some sequence of 0 ≤ γ1, ..., γm ≤ 1 and s1, ..., sm ∈ Mi and recursively [xj ](i) = [xj−1](i) + γj(sj − [xj−1](i))
(x0 = x). Apply Lemma 10 for each coordinate block, we know that there exist s(i) ∈Mi in each block i ∈ S such that

x̃(i) = x(i) + γ(i)(s(i) − x(i))

with
γ(i) ≤

∑
j∈ iterations where i is updated

γj ≤ mγmax. (14)

Note that s(i) ∈Mi for each i ∈ S implies that their concatenation s(S) ∈MS . Also γmax ≤ γ−κj . Therefore

‖x̃− x‖ =

∥∥∥∥∥∑
i∈S

γ(i)(s(i) − x(i))

∥∥∥∥∥ ≤ mγmax‖s(S) − x(S)‖ ≤ Y γ−κjD
τκj
‖·‖

where Y is a random variable that denotes the number of updates received by the most updated coordinate block (the
maximum load). Apply a previously used argument to get γ−κj < 2γ, take expectation on both sides, to get the following
by the law of total expectations and (14)

E‖x̃− x‖ ≤ E
(
Y γ−κjD

τκj
‖·‖

)
= E

[
E
(
Y γ−κjD

τκj
‖·‖

∣∣∣κj)] = E
[
γ−κjD

τκj
‖·‖ E (Y |κj)

]
≤ 2γE

[
D
τκj
‖·‖ E (Y |κj)

]
(15)

This expectation is taken over the entire history of minibatch choice and delay associated with each update. When we
condition on κj , the conditional expectation of Y becomes the load-balancing problem.

By Lemma 11 when κmaxτ ≤ n
logn , it follows from (15) that

E‖x̃− x‖ ≤ 2γEDκjτ
‖·‖

3 log n

log(n/κjτ)
≤ 3 log n

log[n/(τκmax)]
2γEDκjτ

‖·‖ .

When κmaxτ < cn log n,

E‖x̃− x‖ ≤ 2γEDκjτ
‖·‖ O(log n) ≤ O(log n)2γEDκjτ

‖·‖ .

When κmaxτ � n log n, then

E‖x̃− x‖ ≤ (1 + o(1))
τκmax

n
2γEDκjτ

‖·‖ .

Repeating the above results for each block j ∈ S, and summing them up leads to an upper bound for
γδCτf

2 and the proof
of (9) is complete by solving for δ.

B. Proofs of other technical results
Relationship of the curvatures.
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Proof of Lemma 1. C(S)
f ≤ Cf follows from the fact that

〈y(S) − x(S),∇(S)f(x)〉 = 〈y[S] − x[S],∇f(x)〉,

and s[S] ∈ M. In other words, the arg sup of (3) is a feasible solution in the sup to compute the global Cf . Similar
argument holds for the proof C(i)

f ≤ C
(S)
f as i ∈ S.

In the second part,

Cτf =
1(
n
τ

) ∑
T⊂[n],|T |=τ

C
(T )
f .

We can evenly partition sets T in the summation into n parts Pj for j ∈ [n], such that sets in Pj have the element j. Clearly
each Pj has a size of

(
n
τ

)
/n. We can use C(S)

f ≥ Cf (j) from the first inequality of the lemma, to get the inequality below.

Cτf =
1(
n
τ

) ∑
j∈[n]

∑
T∈Pj

C
(T )
f ≥ 1(

n
τ

) ∑
j∈[n]

∑
T∈Pj

C
(j)
f =

1(
n
τ

) ∑
j∈[n]

(
n

τ

)
1

n
C

(j)
f =

1

n
C⊗f

The relaxation of Cτf to Cf is trivial since C(T )
f ≤ Cf holds for any T ⊆ [n] from the first part of the lemma.

Bounding Cτf using expected boundedness and expected incoherence

Proof of Theorem 4. By Definition of H, for any x, z ∈M, γ ∈ [0, 1]

f(x+ γ(z − x)) ≤ f(x) + γ(z − x)T∇f(x) +
γ2

2
(z − x)TH(z − x).

Rearranging the terms we get

2

γ2
[
f(x+ γ(z − x))− f(x)− γ(z − x)T∇f(x)

]
≤ (z − x)TH(z − x)

The definition of set curvature (3) is written in an equivalent notation with z = x[Sc] + s[S] and y = x + γ(z − x) =
x+ γ(s[S] − x[S]). So we know the support of z − x is constrained to be within the coordinate blocks S.

Plugging this into the definition of (3) we get an analog of Equation (2.12) in (Jaggi, 2011) for C(S)
f .

C
(S)
f = sup

x,z∈M,γ∈[0,1]
z(Sc)−x(Sc)=0

2

γ2
[
f(x+ γ(z − x))− f(x)− γ(z − x)T∇f(x)

]
≤ sup
x,z∈M,
z(Sc)−x(Sc)=0

(z − x)TH(z − x) = sup
x,z∈M,
z(Sc)−x(Sc)=0

sT(S)Hs(S)

≤ sup
w∈M(S)

(2wT )HS(2w) = 4

 sup
wi∈M(i)∀i∈S

∑
i∈S

wTi Hiiwi +
∑

i,j∈S,i 6=j

wTi Hiiwj


≤ 4

∑
i∈S

sup
z

sup
wi

wTi Hii(z)wi +
∑

i,j∈S,i 6=j

sup
z

sup
wi,wj

wTi Hii(z)wj


≤ 4(

∑
i∈S

Bi +
∑

i,j∈S,i 6=j

µij).

Take expectation for all possible S of size τ and we obtain the lemma statement.
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Proof of the example with sublinear dependence of κ

Proof of Lemma 7. We first show that a continuous extension of Dθ
‖·‖ is concave in θ

Dθ
‖·‖ = max

S⊂[n]||S|=θ
sup

x,y∈M(S)

‖x− y‖

= max
S⊂[n]||S|=θ

sup
x,y∈M(S)

√∑
i∈S
‖x(i) − y(i)‖2

=

√
max

S⊂[n]||S|=θ

∑
i∈S

sup
x(i),y(i)∈M(i)

‖x(i) − y(i)‖2

The supremum is obtained by sorting and the function in the square root is concave function of θ, when we extend the
support of this function to R+ through linear interpolation. By the composition theorem, the square root of that is also a
concave function in τ . We call this function D̃θ

‖·‖. Note that D̃θ
‖·‖ = Dθ

‖·‖ when θ ∈ [n] such that if we take expectation
over the any discrete distribution over θ, their expectations are the same. It follows from Jensen’s inequality that

EDκτ
‖·‖ = ED̃κτ

‖·‖ ≤ D̃
Eκτ
‖·‖

≤ DdEκτe‖·‖

=

√
max

S⊂[n]
∣∣|S|=dEκτe

∑
i∈S

sup
x(i),y(i)∈M(i)

‖x(i) − y(i)‖2

≤
√
dEκeDτ

‖·‖.

Proof of specific examples

Proof of Example 1. First of all, H = λATA. Since all columns of A have the same magnitude
√

2/n. By the Holder’s
inequality and the 1-norm constraint in every block, we know Bi = 2

n2λ for any i therefore B = 2
n2λ . Secondly, by

well-known upper bound for the area of the spherical cap, which says for any fixed vector z and random vector a on a unit
sphere in Rd,

P(|〈z, a〉| > ε‖z‖) ≤ 2e
−dε2

2 ,

we get

P(µij > 2

√
20 log d

d
) ≤ 2

d10
.

Take union bound over all pairs of labels we get the probability as claimed.

Proof of Example 2. The matrix DTD is tridiagonal with 2 on the diagonal and −1 on the off-diagonal. If we vectorize U
by concatenating u = [u1; ...;un−1], the Hessian matrix for uwill beH = ΠId⊗(DTD)ΠT where Π is some permutation
matrix. Without calculating it explicitly, we can express

uTSHSuS = uTS (DT ⊗ 1d)(D
T ⊗ 1d)

TuS

=
∑
i∈S

uTi


DT

:,i

DT
:,i
...

DT
:,i

 [D:,i D:,i . . . D:,i

]
ui +

∑
i,j∈S,i 6=j

uTi


DT

:,i

DT
:,i
...

DT
:,i

 [D:,j D:,j . . . D:,j

]
uj .

We note that for any |i− j| ≥ 2, the second term is 0. Apply the constraint that ‖ui‖2 ≤ λ and the fact that the `2 operator
norm of

[
D:,j D:,j . . . D:,j

]
is
√

2d, we get Bi = 2λ2d. Similarly, 2(n− 2) nonzero obeys µij = λ2d. This allows
us to obtain an upper bound

Cτf ≤ 4

[
2τλ2d+

2(n− 2)τ(τ − 1)

(n− 2)(n− 1)
λ2d

]
≤ 16τλ2d.

which scales with τ .
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B.1. Pseudocode for the Multicore Shared Memory Architecture

We present pseudocode for the multicore shared memory setting here. It is the same except that each worker becomes a
thread, the network buffer of servers become the a data structure, the workers’ network buffer becomes the shared parameter
vector and the workers can write to the data structure or the shared parameter vector directly.

Algorithm 2 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe (Shared memory)

————————SERVER THREAD———————
Input: An initial feasible x(0), mini-batch size τ , number of workers T .
0. Write x(0) to shared memory. Declare a container (a queue or a stack).
for k = 1,2,... (k is the iteration number.) do

1. Keep popping the container until we have τ updates on τ disjoint blocks. Denote the index set by S.
2. Set step size γ = 2nτ

τ2k+2n .

3. Write sparse updates x(k) = x(k−1) + γ
∑
i∈S(s[i] − x

(k−1)
[i] ) into the shared memory.

if converged then
Broadcast STOP signal to all threads and break.

end if
end for
Output: x(k).
———————–WORKER THREADS———————
while no STOP signal received do

a. Randomly choose i ∈ [n].
b. Calculate partial gradient∇(i)f(x) using x in the shared memory and solve (2).
c. Push {i, s(i)} to the container.

end while

The above pseudo code can be further simplified when τ = 1. In particular, we do not need a server any more. Each
worker can simply write to the shared memory bus. The probability of two workers writing to the same block is small as
we analyzed in Section D.2. The algorithm essentially lock-free as in (Niu et al., 2011) modulo requiring the updates of
each coordinate block to be atomic. Niu et al. (2011) is stronger in that it allows each scalar addition to be atomic.

There is an additional restriction due to the fixed predefined sequence of step sizes, which in fact requires a centralized
shared counter that is atomic, so that no two threads have simultaneously the same k. In practice, we can simply choose a
fixed sequence of stepsize for each worker separately.

Algorithm 3 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe (Lock-Free Shared-Memory)

Input: An initial feasible x(0), number of workers T , a centralized counter.
0. Write x(0) to shared memory.
————INDEPENDENTLY ON EACH THREAD———–
while not converged do

a. Randomly choose i ∈ [n].
b. Calculate partial gradient∇(i)f(x) using x in the shared memory and solve (2).
c. Read centralized counter for k. Set step size γ = 2n

k+2n .
d. Add γ(s(i) − x(i)) to block i of the shared memory.
e. Increment the counter k = k + 1.

end while
——————————————————————-
if converged then

Output: x(k). and break.
end if
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C. Application to Structural SVM
We briefly review structural SVMs and show how to solve the associated convex optimization problem using our AP-BCFW
method.

In structured prediction setting, the task is to predict a structured output y ∈ Y , given x ∈ X . For example, x could
be the pixels in the picture of a word, y could be the sequence of characters in the word. A feature map φ : X ×
Y → Rd encodes compatibility between inputs and outputs. A linear classifier parameter w is learned from data so that
argmaxy∈Y〈w, φ(x,y)〉 gives the output for an input x. Suppose we have the training data {xi,yi}ni=1 to learn w. Define
ψi(y) := φ(xi,yi) − φ(xi, y) and let Li(y) := L(yi,y) denote the loss incurred by predicting y instead of the correct
output yi. The classifier parameter w is learned by solving the optimization problem

min
w,ξ

λ

2
‖w‖2 +

1

n

n∑
i=1

ξi (16)

s.t 〈w, ψi(y)〉 ≥ L(yi,y)− ξi ∀i,y ∈ Y(xi).

We solve the dual of this problem using our method. We introduce some more notation to formulate the dual. Denote
Yi := Y(xi), the set of possible labels for xi. Note that |Yi| is exponential in the length of label yi. Let m =

∑
i=1 |Yi|.

Let A ∈ Rd×m denote a matrix whose m columns are given by { 1
λnψi(y) | i ∈ [n],y ∈ Yi}. Let b ∈ Rm be a vector

given by the entries { 1nLi(y) | i ∈ [n],y ∈ Yi}. The dual of (16) is given by

min
α∈Rm

f(α) :=
λ

2
‖Aα‖2 − bTα (17)

s.t
∑
y∈Yi

αi(y) = 1 ∀i ∈ [n], α ≥ 0

The primal solution w can be retrieved from the dual solution α from the relation w = Aα obtained from KKT conditions.
Also note that the domainM of (17) is exactly the product of simplicesM = ∆|Y1| × · · · ×∆|Yn|.

The subproblem in equation (2) takes a well-known form in the Frank-Wolfe setup for solving (17). The gradient is given
by

∇f(α) = λATAα− b = λATw − b

whose (i,y)-th component is given by 1
n (〈w, ψi(y)〉 − Li(y)). Define Hi(y;w) := Li(y) − 〈w, ψi(y)〉 so that the

(i,y)-th component of the gradient is − 1
nHi(y;w). In the subproblem (2), the domainM(i) is the simplex ∆Yi and the

block gradient ∇(i)f(α) is linear. So, the objective is minimized at a corner of the simplexM(i) and the optimum value
is simply given by miny∇(i)f(α) which can be rewritten as maxyHi(y;w). Further, the corner can be explicitly written
as the indicator vector ey

∗
i ∈ M(i) where y∗i = argmaxyHi(y;w). It turns out that this maximization problem can be

solved efficiently for several problems. For example, when the output is a sequence of labels, a dynamic programming
algorithm like Viterbi can be used.

As mentioned before, m is too large to update the dual variable α directly. So, we make an update to the primal variable
w = Aα instead. The Block-Coordinate Frank-Wolfe update for the i-th block maybe written as αk+1

(i) = αki +γ(si−αk(i))
where γ is the step-size. Recalling that the optimal si is ey

∗
i , by multiplying the previous equation by Ai, we arrive at

w
(k+1)
i = wk

i + γ(Ai,y∗i − w
(k)
i ) where w

(k)
i := Aiα(i). From this definition of w(k)

i , the primal update is obtained

by noting that w(k) =
∑
iw

(k)
i . Explicitly, the primal update is given by w(k+1) = wk + γ(Ai,y∗i − w

(k)
i ). Note

that Ai,y∗i = 1
λnψ(y

∗
i ). This Block-Coordinate version can be easily extended to AP-BCFW. In our shared memory

implementation, for OCR dataset, we do the line search computation and w
(k)
i update step on the workers instead of the

server because these computations turn out to be expensive enough to make the server the bottleneck even for modest
number of workers.
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D. Other technical results and discussions
D.1. Oracle assumption and heterogeneous blocks

Recall that our results rely on the oracle assumption that O provides updates that are iid uniform over [n] (Assumption
A1). We discuss the implications and limitations of this assumption and then propose possible solutions.

Consider the setting where O consists of T possibly heterogeneous workers and each worker samples iid from [n]. As we
discussed before, A1 holds under the additional condition that the time needed to complete one subroutine solve for Block
i by Worker j does not depend on i.

Consider the simple example due to an anonymous reviewer: Let τ = 1, T = 2 and there are a total of two blocks. Block
1 takes only a millisecond an Block 2 takes a year to solve for both workers. In this case, the first update received by the
server is with probability 3/4 for Block 1 and only 1/4 for Block 2.

This could potentially limit the use of our parallel algorithm for applications such as structured predictions where sentences
having different lengths, or cases where there are different sparsity level over data points/constraints depending on how we
formulate the problem.

This is in fact not a problem unique to us, Assumption A1 is implicitly required in most existing analysis for asynchronous
stochastic algorithms (e.g., Liu et al., 2014; Niu et al., 2011). As a result, they all share the same woe. One could argue
that parallelization is the wrong problem to address when block subroutines significantly differ with each other. Efforts
should be spent on perhaps solving the expensive subproblem in parallel. But still, even mild heterogeneity over blocks
invalidates our convergence result.

Henceforth, we propose two simple ways to address this issue and discuss their pros and cons.

Padding: A naive solution is to per-calculate the time-complexity with respect to each block and inject artificial time
padding on each user such that all blocks have the same time complexity.

Pre-select S: An alternative is to let the server randomly choose a coordinate subset S of size τ , and the workers can only
work on S, either by independently sample from S or work on whichever that is not available.

Neither of the two solutions is completely satisfactory. The padding approach ensures all results in the paper to hold
including those for the delayed oracles, but inevitably, the time to complete each block now depends on the most expensive
block. The second approach has milder dependence on the worst block, in fact it depends only on the time for the fastest
worker to solve the slowest problem in each chosen S. However, it requires sending an updated parameter to all workers in
every iteration. It could still be robust to heterogeneous workers when τ is several times larger than T , and when workers
work asynchronously within the mini-batch, we prove in Proposition 12 that the number of collisions is small.

Fully asynchronous parallelism over blocks with heterogeneous blocks without dependence on the slowest block remains
an important open problem.

D.2. Controlling collisions in distributed setting

In the distributed setting, different workers might end up working on the same slot.

In Algorithm 1, different workers may end up working on the same coordinate block and the server will drop a number of
updates in case of collision. The following proposition shows that for this potential redundancy is not excessive is small
and for a large range of τ , we also show additional strong concentration to its mean.

Proposition 12. In the distributed asynchronous update scheme above:
i) The expected number of subroutine calls from all workers to complete each iteration is τ +

∑τ−1
i=1

i
n−i .

ii) If 0.02n < τ < 0.6n, with probability at least 1− exp(−n/60), no more than 2τ random draws (2τ subroutine calls
in total from all workers) suffice to complete each iteration.

Proof. The first claim is the well-known coupon collector problem.

The second claim requires an upper bound of the expectation. In expectation, we need n
n−k balls to increase the unique
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count from k to k + 1. So in expectation we need

1 +
n

n− 1
+

n

n− 2
+ ...+

n

n− τ + 1
= τ +

τ−1∑
i=1

i

n− i

≤ τ +
1 + 2 + · · ·+ (τ − 1)

n− τ + 1
= τ +

τ(τ − 1)

2(n− τ + 1)
< τ

[
1 +

1

2(n/τ − 1)

]
.

To see the second claim, first defined ft to be the number of non-empty bins after t random ball throws, which can
be consider as a function of the t iid ball throws X1, X2, ..., Xt. It is clear that if we change only one of the Xi, ft
can be changed by at most 1. Also, note that the probability that any one bin being filled is 1 − (1 − 1

n )t, so Eft =

n
[
1−

(
1− 1

n

)t]
.

By the McDiarmid’s inequality, P [ft < Eft − ε] ≤ exp
[
− 2ε2

t

]
. Take t = 2τ , and ε = Ef2τ − τ , then

P [f2τ < τ ] ≤ exp

−1

τ

(
n

[
1−

(
1− 1

n

)2τ
]
− τ

)2
 ≤ exp

[
−1

τ

(
n
[
1− e− 2τ

n

]
− τ
)2]

= exp

[
−n · n

τ

(
1− e− 2τ

n − τ

n

)2]
≤ exp [−Cn],

where C is some constant which is the smaller of the two evaluations of the function n
τ

(
1− e− 2τ

n − τ
n

)2
at τ = 0.02n

and τ = 0.6n (where the function is concave between the two). As a matter of fact, C can be taken as 1
60 .

Let gτ be the number of balls that one throws that fills τ bins, the result is proven by noting that

P(gτ ≤ 2τ) = P(f2τ ≥ τ) ≥ 1− exp [−Cn].

D.3. Curvature and Lipschitz Constant

In this section, we illustrate the relationship between the coordinate curvature constant, coordinate gradient Lipschitz
conditions, and work out the typical size of the constants in Theorem 6. For the sake of discussion, we will focus on the
quadratic function f(x) = xTAx

2 + bTx. We start by showing that for quadratic function. The constant that one can get via
choosing a specific norm can actually match the curvature constant. To be completely explicit, we define gradient Lipschitz
constant L‖·‖ with respect to a norm ‖ · ‖, this requires that for any x, y,

‖∇f(y)−∇f(x)‖∗ ≤ L‖x− y‖.

where ‖ · ‖∗ is the dual norm.

Proposition 13. For quadratic functions with Hessian A � 0, there exists a norm ‖ · ‖ such that the curvature constant
Cf = [D‖·‖]

2L‖·‖.

Proof. We will show that this norm is simply theA-norm, ‖ ·‖A =
√

(·)TA(·). The upper bound Cf ≤ [D‖·‖A ]2L‖·‖A is a
direct application of the result in Jaggi (2013, Appendix D). To show a lower bound it suffices to construct s, x ∈ M, γ ∈
[0, 1] and y = γs+ (1− γ)x such that

2

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉) = [D‖·‖A ]2L‖·‖A .

For quadratic functions,

2

γ2
[f(y)− f(x)− 〈y − x,∇f(x)〉] =

1

2
(y − x)TA(y − x) =

1

γ2
‖y − x‖2A
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Take γ = 1 and y, x on the boundary ofM such that ‖y − x‖A = D‖·‖A , as a result, we get Cf ≥ D‖·‖A ]2. It remains to
show that the gradient Lipschitz constant with respect to A-norm is 1, which directly follows from the Taylor expansion.

Similar arguments work for C(i)
f and C(S)

f under the same norm. Clearly, this means that the corresponding restriction of
the subset domain has Ai,i-norm or A(S)-norm.

We now consider the approximation constants due to the delays in Theorem 6, and work out more explicit bounds for
quadratic functions and carefully chosen norm. Recall that the simple bound (8) has constant δ in the order of

κτL1
‖·‖D

1
‖·‖D

τ
‖·‖

Cτf
.

Suppose we use the A-norm, then L1
‖·‖ = Lτ‖·‖ = 1, and Cτf = [Dτ

‖·‖]
2, the bound can be reduced to

δ = O(
τD1
‖·‖

Dτ
‖·‖

) = O(κ
√
τ).

where the last step requiresMi to be all equivalent and A to be block-diagonal with identical A(i).

Similarly the strong bound (9) has constant δ in the order of

δ = Õ

(
τL1
‖·‖D

1
‖·‖D

κτ
‖·‖

Cτf

)
= Õ

(
τD1
‖·‖D

κτ
‖·‖

[Dτ
‖·‖]

2

)
= Õ(

√
κτ)

Again, the last step requires a strong assumption thatMi to be all equivalent and A to be block-diagonal with identical
diagonal blocks. While these calculations only apply to specific case of a quadratic function with a lot of symmetry, we
conjecture that in general the flexibility of choosing the norm will allow the ratio of these boundedness constants and Cτf
to be a well-controlled constant and the typical dependence on the system parameter τ and κ should stay within the same
ball park.

D.4. Examples and illustrations

In this section, we now derive specific instances of the Theorem 4 for the structural SVM and Group Fused Lasso. For the
structural SVM, a simple generalization of Lacoste-Julien et al. (2013, Lemmas A.1, A.2) shows that in the worst case,
using τ > 1 offers no gain at all. Fortunately, if we consider more specific problems, using larger τ does yield faster
convergence. We provide two such examples below.
Example 1 (Structural SVM for multi-label classification (with random data)). We describe the application to struc-
tural SVMs in detail in Section C (please see this section for details on notation). Here, we describe the convergence
rate for this application. According to (Yu & Joachims, 2009), the compatibility function φ(x, y) for multiclass classi-
fication will be [0, ..., 0, xT , 0, ...0]T /λn where the only nonzero block that we fill with the feature vector is the (y)th
block. So ψi(xi, j) = φ(xi, yi) − φ(xi, j) looks like [0, ..., 0, xTi , 0 , ...0, −xTi , 0, ...0]T /λn. This already ensures that
B = 2

n2λ provided xi lie on a unit sphere. Suppose we have K classes and each class has a unique feature vector drawn
randomly from a unit sphere in Rd; furthermore, for simplicity assume we always draw τ < K data points with τ distinct

labels3µ ≤
√

c log d
d

2
n2λ , for some constant c. In addition, if d ≥ τ2

√
c log d, then with high probability

Cτf ≤
8τ + 8τ2

√
c log d
d

n2λ
= O

( cτ

n2λ

)
,

which yields a convergence rate O( R
2

λτk ), where R :=
maxi∈[n],y∈Yi ‖ψi(y)‖2 using notation from Lemmas A.1 and A.2 of Lacoste-Julien et al. (2013).

This analysis suggests that a good rule-of-thumb is that we should choose τ to be at most the number of categories for the
classification. If each class is a mixture of random draws from the unit sphere, then we can choose τ to be the underlying
number of mixture components.

3This is an oversimplification but it offers a rough rule-of-thumb. In practice, Cτf should be in the same ballpark as our estimate here.



Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Example 2 (Group Fused Lasso). The Group Fused Lasso aims to solve (typically for q = 2)

min
X

1
2‖X − Y ‖

2
F + λ‖XD‖1,q, q > 1, (18)

whereX,Y ∈ Rd×n, and column yt of Y is an observed noisy d-dimensional feature vector at time 1 ≤ t ≤ n. The matrix
D ∈ Rn×(n−1) is the differencing matrix that takes the difference of feature vectors at adjacent time points (columns). The
formulation aims to filter the trend that has some piecewise constant structures. The dual to (18) is

max
U
− 1

2
‖UDT ‖2F + trUDTY T

s.t. ‖U:,t‖p ≤ λ, ∀t = 1, ..., n− 1,

where p is conjugate to q, i.e., 1/p+ 1/q = 1. This block-constrained problem fits our structure (1). For this problem, we
find that B ≤ 2λ2d and µ ≤ 2λ2d/(n− 1), which yields

Cτf ≤ 16τλ2d.

Consequently, the rate of convergence becomes O(n
2λ2d
τk ). In this case, batch FW will have a better rate of convergence

than BCFW4.

Example 3 (Structural SVM worst-case bound). For structural SVM with arbitrary data (including even pathological/trivial
data), using notation from Lemmas A.1 and A.2 of Lacoste-Julien et al. (2013), defineR := maxi∈[n],y∈Yi ‖ψi(y)‖2. Then
we can provide an upper bound

B,µ ≤ R2

λn2
=⇒ Cτf ≤

4τ2R2

λn2
. (19)

In this case, for any τ = 1, ..., n, the rate of convergence will be the same O(R
2

λk ).

An illustration for the group fused lasso Figure 7 shows a typically application for group fused lasso (filtering piecewise
constant multivariate signals whose change poitns are grouped together).

Figure 7. Illustration of the signal data used in the Fused Lasso experiments. We show the original signal (left), the noisy signal given to
the algorithm (middle), and the signal recovered after performing the fused lasso optimization (right).

4Observe that Cτf does not have an n2 term in the denominator to cancel out the numerator. This is because the objective function is
not appropriately scaled with n like it does in the structural SVM formulation.



Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

D.5. Comparison to parallel block coordinate descent

With some understanding on Cτf , we can now explicitly compare the rate of convergence in Theorem 2 with parallel BCD
(Liu et al., 2014; Richtárik & Takáč, 2015) under the assumption of µ = O(B/τ) — a fair and equally favorable case to all
of these methods. We acknowledge that more general treatments of ESO property in more recent extensions of Richtárik
& Takáč (2015) in a similar flavor as our (7) (see e.g., Qu & Richtárik 2014) but similar results are not available for the
asynchronous version. To facilitate comparison, we will convert the constants in all three methods to block coordinate
gradient Lipschitz constant Li, which obeys

f(x+ s[i]) ≤ f(x) + 〈s[i],∇f(x)〉+ Li‖s[i]‖2, (20)

for any x ∈M, s(i) ∈Mi. Observe that Bi ≤ 4Lidiam(Mi)
2 = Li maxx∗i ,xi∈Mi

‖xi − x∗i ‖2, so

B ≤ 1

n

∑
i

Li max
xi,x∗i

‖xi − x∗i ‖ (21)

≤ 1

n

∑
i

Li max
x
‖x− x∗‖2 = Ei(Li)R2 (22)

whereR := maxx ‖x−x∗‖. The rate of convergence for the three methods (with τ oracle calls considered as one iteration)
are given below.

Method Rate

AP-BCFW (Ours) Op

(
nEi(Li)R2

τk

)
P-BCD5 Op

(
nEi(Li)R2

τk

)
AP-BCD6 Op

(
nmaxi LiR

2

τk

)

The comparison illustrates that these methods have the same O(1/k) rate and almost the same dependence on n and τ
despite the fact that we use a much simpler linear oracle. Nothing comes for free though: Nesterov acceleration does
not apply for Frank-Wolfe based methods in general, while a careful implementation of parallel coordinate descents can
achieve O(1/k2) rate without any full-vector interpolation in every iteration (Fercoq & Richtárik, 2015). Also, Frank-
Wolfe methods usually need additional restrictive conditions or algorithmic steps to get linear convergence for strongly
convex problems.

These facts somewhat limits the applicability of our method to cases when projection can be computed as efficiently as (2).
However, as is surveyed in (Jaggi, 2013), there are many interesting cases when (2) is much cheaper than projections, e.g.,
projection onto a nuclear norm ball takes O(n3) while (2) takes only O(n2).

Lastly, we note that in the fully asynchronous setting, we obtained an exponential improvement on the dependence of delay
comparing to that in (Liu et al., 2014). It is unclear whether this is a unique property of the block-coordinate Frank-Wolfe
algorithm or similar results can be obtained for projection based block-coordinate descent.

5In (Richtárik & Takáč, 2015, Theorem 19)
6In (Liu et al., 2014, Theorem 3)


